Как уменьшить обороты коллекторного двигателя?

Как уменьшить обороты коллекторного двигателя?

JLCPCB, всего $2 за прототип печатной платы! Цвет — любой!

Зарегистрируйтесь и получите два купона по 5$ каждый:https://jlcpcb.com/cwc

Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет

Схема регулятора оборотов, бюджетных пылесосов LG

Мощность до 1,5 кВт зависит от симистора (например BT138). В реальном конструктиве радиатор триака выведен в поток всасываемого воздуха.

На базе интеллектуальных силовых ключей верхнего плеча PROFET+2 производства Infineon можно создавать мощные приложения, способные коммутировать значительные токи. Однако миниатюрность их корпусов может стать причиной чрезмерного нагрева. Статья рассказывает о методах проектирования печатных плат для ключей PROFET+2, позволяющих минимизировать этот недостаток.

_________________
Мудрость(Опыт и выдержка) приходит с годами.
Все Ваши беды и проблемы, от недостатка знаний.
Умный и у дурака научится, а дураку и ..
Алберт Ейнштейн не поможет и ВВП не спасет. и МЧС опаздает
и таки теперь Дураки и Толерасты умирают по пятницам!

Технология компании Analog Devices для импульсных преобразователей, названная Silent Switcher, позволяет на порядок (по напряжению) уменьшить эмиссию электромагнитных волн не за счет доп. фильтров или уменьшения КПД, а за счет правильного размещения элементов. Рассмотрим методы борьбы с электромагнитными помехами при импульсном преобразовании с помощью микросхем Silent Switcher и модулей Silent Switcher 2.

_________________
Лечу лечить WWW ашу покалеченную технику.

_________________
Привет П. Ну все поняли.

_________________
Мудрость(Опыт и выдержка) приходит с годами.
Все Ваши беды и проблемы, от недостатка знаний.
Умный и у дурака научится, а дураку и ..
Алберт Ейнштейн не поможет и ВВП не спасет. и МЧС опаздает
и таки теперь Дураки и Толерасты умирают по пятницам!

Открою военную тайну)

Эти движки от пылесосов имеют сериесное включение те обмотка возбуждения там соединена с роторной последовательно. Такое включение это конечно дешево и сердито но следить за оборотами под нагрузкой нетривиальная задача — надо таходатчик САР городить и тд.

Кроме того практика показала что питать такие моторы от «розетки» переменкой — маразм полнейший у обмоток высокое реактивное сопротивление, соответственно получаем лишний нагрев и потерю мощности.

Я делал так. От внешнего ИП подавал на мотор 2 постоянных напряжения:

1) на обмотку возбуждения чтоб ток был в пределах 0.5 — 1.5A
2) на ротор где-то от 25 до 120В постоянки от ЛАТРа через диоды (тип ИП не важен) — но не больше!

В итоге получаем следующее. Обороты становятся постоянны мотор не идет в разнос без нагрузки. И что главное — не падают особо под нагрузкой!

Играясь с током возбуждения и напряжением на роторе можно найти оптимальную рабочую точку для вашего конкретного приложения.

Главное помнить что эти моторчеки (от пылесосов) в ротор нельзя давать ток более 3A. Ну и конечно же никаких 1800Вт или сколько там написано там нету и в помине. Максимум 300 — 400 Вт на валу. Обороты раскочегаривать выше 8000 явно не стоит тоже.

Вот от стиралки «Электроюкс» там реально 1 Квт снять с вала а то и больше.

_________________
Мудрость(Опыт и выдержка) приходит с годами.
Все Ваши беды и проблемы, от недостатка знаний.
Умный и у дурака научится, а дураку и ..
Алберт Ейнштейн не поможет и ВВП не спасет. и МЧС опаздает
и таки теперь Дураки и Толерасты умирают по пятницам!

_________________
Мудрость(Опыт и выдержка) приходит с годами.
Все Ваши беды и проблемы, от недостатка знаний.
Умный и у дурака научится, а дураку и ..
Алберт Ейнштейн не поможет и ВВП не спасет. и МЧС опаздает
и таки теперь Дураки и Толерасты умирают по пятницам!

Часовой пояс: UTC + 3 часа

Кто сейчас на форуме

Сейчас этот форум просматривают: Google [Bot] , ijz и гости: 37

Виды и устройство регуляторов оборотов коллекторных двигателей

Коллекторные двигатели часто можно встретить в бытовых электроприборах и в электроинструменте: стиральная машина, болгарка, дрель, пылесос и т. д. Что совсем не удивительно, ведь коллекторные двигатели позволяют получать и высокие обороты, и большой крутящий момент (в том числе высокий пусковой момент) — что и нужно для большинства электроинструментов.

При этом коллекторные двигатели могут питаться как постоянным током (в частности — выпрямленным), так и переменным током от бытовой сети. Для управления скоростью вращения ротора коллекторного двигателя применяют регуляторы оборотов, о них и пойдет речь в данной статье.

Для начала вспомним устройство и принцип работы коллекторного двигателя. Коллекторный двигатель включает в себя обязательно следующие части: ротор, статор и щеточно-коллекторный коммутационный узел. Когда питание подается на статор и на ротор, их магнитные поля начинают взаимодействовать, ротор начинает в итоге вращаться.

Питание на ротор подается через графитовые щетки, плотно прилегающие к коллектору (к ламелям коллектора). Для изменения направления вращения ротора, необходимо изменить фазировку напряжения на статоре или на роторе.

Обмотки ротора и статора могут питаться от разных источников или же могут быть соединены параллельно либо последовательно друг с другом. Так различаются коллекторные двигатели параллельного и последовательного возбуждения. Именно коллекторные двигатели последовательного возбуждения можно встретить в большинстве бытовых электроприборов, поскольку такое включение позволяет получить устойчивый к перегрузкам двигатель.

Говоря о регуляторах оборотов, прежде всего остановимся на самой простой тиристорной (симисторной) схеме (смотрите ниже). Данное решение применяется в пылесосах, стиральных машинах, болгарках, и показывает высокую надежность при работе в цепях переменного тока (особенно от бытовой сети).

Работает данная схема достаточно незатейливо: на каждом периоде сетевого напряжения конденсатор заряжается через резистор до напряжения отпирания динистора, присоединенного к управляющему электроду основного ключа (симистора), после чего симистор открывается и пропускает ток к нагрузке (к коллекторному двигателю).

Регулируя время зарядки конденсатора в цепи управления открыванием симистора, регулируют среднюю мощность подаваемую на двигатель, соответственно регулируют обороты. Это простейший регулятор без обратной связи по току.

Симисторная схема похожа на обычный диммер для регулировки яркости ламп накаливания, обратной связи в ней нет. Чтобы появилась обратная связь по току, например чтобы удерживать приемлемую мощность и не допускать перегрузок, необходима дополнительная электроника. Но если рассмотреть варианты из простых и незатейлевых схем, то за симисторной схемой следует реостатная схема.

Реостатная схема позволяет эффективно регулировать обороты, но приводит к рассеиванию большого количества тепла. Здесь требуется радиатор и эффективный отвод тепла, а это потери энергии и низкий КПД в итоге.

Более эффективны схемы регуляторов на специальных схемах управления тиристором или хотя бы на интегральном таймере. Коммутация нагрузки (коллекторного двигателя) на переменном токе осуществляется силовым транзистором (или тиристором), который открывается и закрывается один или несколько раз в течение каждого периода сетевой синусоиды. Так регулируется средняя мощность, подаваемая на двигатель.

Схема управления питается от 12 вольт постоянного напряжения от собственного источника или от сети 220 вольт через гасящую цепь. Такие схемы подходят для управления мощными двигателями.

Принцип регулирования с микросхемами на постоянном токе — это конечно ШИМ — широтно-импульсная модуляция. Транзистор, например, открывается с строго заданной частотой в несколько килогрец, но длительность открытого состояния регулируется. Так, вращая ручку переменного резистора, устанавливают скорость вращения ротора коллекторного двигателя. Данный метод удобен для удержания малых оборотов коллекторного двигателя под нагрузкой.

Более качественное управление — именно регулировка по постоянному току. Когда ШИМ работает на частоте порядка 15 кГц, регулируя ширину импульсов, управляют напряжением при примерно одном и том же токе. Скажем, регулируя постоянное напряжение в диапазоне от 10 до 30 вольт, получают разные обороты при токе порядка 80 ампер, добиваясь требуемой средней мощности.

Если вы хотите изготовить простой регулятор для коллекторного двигателя своими руками без особых запросов к обратной связи, то можно выбрать схему на тиристоре. Потребуется лишь паяльник, конденсатор, динистор, тиристор, пара резисторов и провода.

Если же нужен более качественный регулятор с возможностью поддержания устойчивых оборотов при нагрузке динамического характера, присмотритесь к регуляторам на микросхемах с обратной связью, способным обрабатывать сигнал с тахогенератора (датчика скорости) коллекторного мотора, как это реализовано например в стиральных машинах.

Читайте также  Чем лучше мыть двигатель?

Как сделать регулятор оборотов коллекторного двигателя?

При использовании электродвигателя в инструментах, одной из серьёзных проблем является регулировка скорости их вращения. Если скорость недостаточно высока, то действие инструмента является недостаточно эффективным.

  • Устройство ↓
  • Регулировка ↓
  • Как изготовить своими руками? ↓
  • Критерии выбора и соимость ↓

Если же она излишне высока, то это приводит не только к существенному перерасходу электрической энергии, но и к возможному пережогу инструмента. При слишком высокой скорости вращения, работа инструмента может стать также менее предсказуемой. Как это исправить? Для этой цели принято использовать специальный регулятор скорости вращения. Особенно вас должны интересовать схемы, которые работают без потери мощности

Двигатель для электроинструментов и бытовой техники обычно относится к одному из 2 основных типов:

  1. Коллекторные двигатели.
  2. Асинхронные двигатели.

В прошлом, вторая из указанных категорий имела наибольшее распространение. Сейчас, примерно 85% двигателей, которые употребляются в электрических инструментах, бытовой или кухонной технике, относятся к коллекторному типу. Объясняется это тем, что они имеют большую степень компактности, они мощнее и процесс управления ими является более простым.

Действие любого электродвигателя построено на очень простом принципе: если между полюсами магнита поместить прямоугольную рамку, которая может вращаться вокруг своей оси, и пустить по ней постоянный ток, то рамка станет поворачиваться. Направление вращения определяется согласно «правилу правой руки».

Эту закономерность можно использовать для работы коллекторного двигателя.

Важным моментом здесь является подключение тока к этой рамке. Поскольку она вращается, для этого используются специальные скользящие контакты. После того, как рамка повернётся на 180 градусов, ток по этим контактам потечёт в обратном направлении. Таким образом, направление вращения останется прежним. При этом, плавного вращения не получится. Для достижения такого эффекта принято использовать несколько десятков рамок.

Устройство

Коллекторный двигатель состоит обычно из ротора (якоря), статора, щёток и тахогенератора:

  1. Ротор — это вращающаяся часть, статор — это внешний магнит.
  2. Щётки, сделанные из графита – это основная часть скользящих контактов, через которую на вращающийся якорь подаётся напряжение.
  3. Тахогенератор – это прибор, который отслеживает характеристики вращения. В случае нарушения равномерности движения, он корректирует поступающее в двигатель напряжение, тем самым делая его более плавным.
  4. Статор может содержать не один магнит, а, например, 2 (2 пары полюсов). Также, вместо статических магнитов, здесь могут быть использованы и катушки электромагнитов. Работать такой мотор может как от постоянного, так и от переменного тока.

Простота регулировки скорости коллекторного двигателя определяется тем, что скорость вращения прямо зависит от величины поданного напряжения.

Кроме этого, важной особенностью является то, что ось вращения непосредственно можно присоединять к вращающемуся инструменты без использования промежуточных механизмов.

Если говорить об их классификации, то можно говорить о:

  1. Коллекторных двигателях постоянного тока.
  2. Коллекторных двигателях переменного тока.

В этом случае, речь идёт о том, каким именно током происходит питание электродвигателей.

Разница состоит в том, как организованы эти подключения.

Тут принято различать:

  • Параллельное возбуждение.
  • Последовательное возбуждение.
  • Параллельно-последовательное возбуждение.

Регулировка

Теперь расскажем о том, как можно регулировать обороты коллекторных двигателей. В связи с тем, что скорость вращения мотора просто зависит от величины подаваемого напряжения, то любые средства регулировки, которые способны выполнять эту функцию для этого вполне пригодны.

Перечислим несколько такого рода вариантов для примера:

  1. Лабораторный автотрансформатор (ЛАТР).
  2. Заводские платы регулировки, используемые в бытовых приборах (можно использовать в частности те, которые применяются в миксерах или в пылесосах).
  3. Кнопки, используемые в конструкции электроинструментах.
  4. Бытовые регуляторы освещения с плавным действием.

Однако, все вышеперечисленные способы имеют очень важный изъян. Вместе с уменьшением оборотов, одновременно уменьшается и мощность работы мотора. В некоторых случаях, его можно остановить даже просто рукой. В некоторых случаях, это может быть приемлемо, но большей частью, это является серьёзным препятствием.

Хорошим вариантом является выполнение регулировки оборотов посредством использования тахогенератора. Его обычно устанавливают на заводе. При отклонениях в скорости вращения мотора, через симисторы в мотор передаётся уже откорректированное электропитание, соответствующее требуемой скорости вращения. Если в эту схему встроить регулировку вращения мотора, то потери мощности здесь происходить не будет.

Как это выглядит конструктивно? Наиболее распространены реостатная регулировка вращения, и сделанная на основе использования полупроводников.

В первом случае, речь идёт о переменном сопротивлении с механической регулировкой. Она последовательно подключается к коллекторному электродвигателю. Недостатком является дополнительное выделение тепла и дополнительная трата ресурса аккумулятора. При таком способе регулировк, происходит потеря мощности вращения мотора. Является дешёвым решением. Не применяется для достаточно мощных моторов по упомянутым причинам.

Во втором случае, при использовании полупроводников, происходит управление мотором путём подачи определённых импульсов. Схема может менять длительность таких импульсов, что в свою очередь, меняет скорость вращения без потери мощности.

Как изготовить своими руками?

Существуют различные варианты схем регулировки. Приведём один из них более подробно.

Вот схема его работы:

Первоначально, это устройство было разработана для регулировки коллекторного двигателя на электротранспорте. Речь шла о таком, где напряжение питания составляет 24 В, но эта конструкция применима и для других двигателей.

Слабым местом схемы, которое было определено при испытаниях её работы, является плохая пригодность при очень больших значениях силы тока. Это связано с некоторым замедлением работы транзисторных элементов схемы.

Рекомендуется, чтобы ток составлял не более 70 А. В этой схеме нет защиты по току и по температуре, поэтому рекомендуется встроить амперметр и контролировать силу тока визуально. Частота коммутации составит 5 кГц, она определяется конденсатором C2 ёмкостью 20 нф.

При этом, рекомендуется подобрать величину R1 таким образом, чтобы правильно настроить работу регулятора. С выхода микросхемы, управляющий импульс поступает на двухтактный усилитель на транзисторах КТ815 и КТ816, далее идёт уже на транзисторы.

Печатная плата имеет размер 50 на 50 мм и изготавливается из одностороннего стеклотекстолита:

На этой схеме дополнительно указаны 2 резистора по 45 ом. Это сделано для возможного подключения обычного компьютерного вентилятора для охлаждения прибора. При использовании в качестве нагрузки электродвигателя, необходимо схему заблокировать блокирующим (демпферным) диодом, который по своим характеристикам соответствует удвоенному значению тока нагрузки и удвоенному значению питающего напряжения.

Работа устройства при отсутствии такого диода может привести к поломке вследствие возможного перегрева. При этом, диод нужно будет поместить на теплоотвод. Для этого, можно воспользоваться металлической пластиной, которая имеет площадь 30 см2.

Регулирующие ключи работают так, что потери мощности на них достаточно малы. В оригинальной схеме, был использован стандартный компьютерный вентилятор. Для его подключения использовалось ограничительное сопротивление 100 Ом и напряжение питания 24 В.

Собранное устройство выглядит следующим образом:

При изготовлении силового блока (на нижнем рисунке), провода должны быть присоединены таким образом, чтобы было минимум изгибов тех проводников по которым проходят большие токи.Мы видим, что изготовление такого прибора требует определённых профессиональных знаний и навыков. Возможно, в некоторых случаях имеет смысл воспользоваться покупным устройством.

Критерии выбора и соимость

Для того, чтобы правильно выбрать наиболее подходящий тип регулятора, нужно хорошо представлять себе, какие есть разновидности таких устройств:

  1. Различные типы управления. Может быть векторная или скалярная система управления. Первые применяются чаще, а вторые считаются более надёжными.
  2. Мощность регулятора должна соответствовать максимально возможной мощности мотора.
  3. По напряжению удобно выбирать устройство, имеющее наиболее универсальные свойства.
  4. Характеристики по частоте. Регулятор, который вам подходит, должен соответствовать наиболее высокой частоте, которую использует мотор.
  5. Другие характеристики. Здесь речь идёт о величине гарантийного срока, размерах и других характеристиках.

В зависимости от назначения и потребительских свойств, цены на регуляторы могут существенно различаться.

Большей частью они находятся в диапазоне примерно от 3,5 тысяч рублей до 9 тысяч:

  1. Регулятор оборотов KA-18 ESC, предназначенный для моделей масштаба 1:10. Стоит 6890 рублей.
  2. Регулятор оборотов MEGA коллекторный (влагозащищенный). Стоит 3605 рублей.
  3. Регулятор оборотов для моделей LaTrax 1:18. Его цена 5690 рублей.

Мастеровым от мастерового.

На этих страницах вы узнаете о моих работах, изделиях и идеях. Я постараюсь дополнять свои видео текстом и изображениями, а так-же тем, что пропустил или вырезал из роликов. С уважением Шенрок Александр.

Ярлыки

  • Работа с деревом
  • регулятор оборотов
  • асинхронный двигатель
  • станки
  • ремонт электроинструмента
  • Обзор инструмента.
  • токарный по дереву
  • Лазерный гравёр из Китая
  • Кирпичное барбекю
Читайте также  Влияет ли вакуумный усилитель на работу двигателя?

Настройка регулятора оборотов коллекторного двигателя с поддержанием мощности.

двигатель дёргается под нагрузкой

110 комментариев:

Добрый день. Регулятор работает , но минимальные обороты 3000-4000 об. Как уменьшить минимальные обороты?

Попробуйте R12 покрутить.

Посмотрите пожалуйста напряжение на 13й ноге и как оно изменяется при регулировке оборотов.

Сергей, обратитесь с этой просьбой либо на форум, ссылку я давал на этой странице. Либо у тех кто занимается изготовлением плат на заказ. Есть в блоге такая страничка. А у меня нет возможности произвести замеры.

Всем привет!У меня проблема-двигатель плавно набирает обороты до максимальных, а я кручу верчу регулировочный резистор и толку 0.Помогите пожалуйста!

Дополнительный светодиод ставили?

Поставил дополнительный светодиод и подстроечный резистор на таходатчик и отрегулировал.Двигатель работает без рывков! А регулировочный резистор с подстроечным не работают!

попробуйте его убрать, что получится?

Доброго дня, собрал плата по своей разводке все работает за исключением того что двигатель не набирает полных оборотов, на резистор реагирует до половины и все, в чем может быть проблема?

Р12 подстроечное. Попробуйте его покрутить.

Добрый день!Собрал плату.Таходатчик не подкючаю двигатель работает на полных оборотах ни на какие регулировки не реагирует.Помогите.

А кто вам сказал что будет работать без таходатчика? Он вообще не должен вращаться. Или вы поставили дополнительный светодиод?

Здравствуйте, напишите пожалуйста как можно заказать плату, я из Ульяновска, почта майл gulnara-173region@mail.ru

светодиода не ставил никакого.как проверить исправность тахо?

у вас тахогенератор (2 провода) или датчик Холла (3 провода)?
Вам нужно саму схему проверить так как без тахо двигатель вообще не должен вращаться.

на любых оборотах двигатель работает рывками, в чем беда?

На этой странице в самом конце статьи. Почитайте.

не могу никак разобраться. при включении в сеть мотор должен сделать рывок. его нет. молчит, не запусаеться. в цем может быть дело? питание на микросхему есть. пробовал менять микросхему и симистор — без изменений

Рывок должен быть при вращении регулятора.
Таходатчик подключили?

Подскажите пожалуйста, без доп.светодиода- рывки, со светодиодом при регулировке R1 выходит плавно на максимум, регулировки нет. Меняя R2 и R9 подбирается только в каком положении R1 запускается двигатель а регулировки все равно нет. Где искать?

Со светодиодом на максимум выходит если нет тахо. посмотрите может плохой контакт. Попробуйте без диода, а подбором R9.

Без тахо со светодиодом выходит (кстати не весь максимум двигателя), без светодиода ставлю R1 на max, R9 сделал переменным на 1 Мом, потихоньку уменьшаю, где-то при 250 кОм двигатель начинает подергиваться делаю чуть меньше сразу максимум оборотов-R1 не регулирует:либо нет, либо сразу вкл плавно на макс

Кстати со светодиодом при нагрузке двигателя поддержки оборотов нет, опускается до малых оборотов и их держит, остановить нельзя

Мне кажется у вас проблемы с таходатчиком. либо магнит откручен, или его вообще нет. Замерте какое напряжение выдаёт тахо на максимуме.

20 вольт переменки , двиг с рабочей стиралки, там бак полетел, а так работала норм вроде

увеличил R9 обороты вышли на полный максимум, на тахо больше 40 вольт

таходатчик вроде генератор переменки, на прозвон импульсов нет, постояное сопротивление только

Тогда даже не знаю что посоветовать.

Все равно спасибо, буду думать

Удачи. Результат напишите.

появилась мысль что виновата регулировочная цепь, полностью закоротил перемычкой R2 и появилась регулировка, но еще не совсем то, попробую уменьшить регулировочное R1

Подскажите и мне пожалуйста. По питанию после резистора на 270 Ом у меня 3 вольта, микросхема при подключении на выводы 8 и 9 15В(с ограничением тока в 100мА) гасит напряжение до 4 В. Три микрухи одинаково. Микры из Китая. В них проблема да?

Спросите на форуме.

Собрал немецкий вариант платы, собственно он по даташиту сделан. Скорость регулируется почти от нуля до максимума. Но регулировка происходит периодически с периодом 2..5 секунд. Т.е. разгоняется мотор до какой-то скорости, напряжение перестает подаваться. Замедлится, снова разгоняется. И так бесконечно. Если вал затормозить, то для разгона контроллер значительно увеличивает мощность, т.е. обратная связь по таходатчику работает. Спасибо!

Если хотите, могу помочь. Я справился со всем кроме авторегулировки мощности. PID регулирование не доделал. По поводу R3 — проверю.

Я в ардуино новичок. Если хорошо комментировано, то интересно глянуть. Вот кстати тема. Я там чайник.

Если в ардуино новичок — то будет трудно. Обратная связь самое простое — пид регулирование. Но там куча нюансов.
Я кстати так и не понял какую схему вы делаете. я отсюда начинал
http://www.cnc-club.ru/forum/viewtopic.php?f=41&t=5718&sid=b42590ac3a04ff5c33fc05b948e5741d

Я сначала хотел сделать на транзисторе, чтоб питать двигатель постоянкой. Плюсы такие: на постоянке движок мощнее, не нужна схема отслеживания нуля, как для симистора, и для регулировки используем уже имеющийся ШИМ, а не считаем время на каждом полупериоде. Но надёжность полевых транзисторов свела на нет мои старания. Двигатель меньшей мощности получилось «крутить», а на движке от стирлки мосфеты вылетали. Тогда спаял симисторную схему, и отслеживание нуля и управление. ПИД регулирование пока не использовал. Пробовал свой алгоритм. От 1,5 тыс обмин держит вроде бы неплохо. Некуда поставить движок чтоб проверить. В качестве тахо ставил датчик Холла. Мне так проще

Спаял схему, двигатель крутит на максимум, без тахо также макс обороты, регулировкам не поддается, в место 24в на схеме всего 20в

Дополнительный светодиод впаивали?

Скачал с интернета схему, описание платы в нем же список деталей, печатную плату. Закупил все детали, отличие в деталях это вместо конденсатора 1мф на 600v я поставил — 1мф на 630v, и вместо диода FR301 поставил FR307. Все остальные детали согласно списка.
Печатную плату поправил под свои детали по размерам. Самостоятельно изготовил печатную плату, спаял все детали. Подключил двигатель SOLE Type 20584.333 от стиральной машины индезит wil85. Двигатель с таходатчиком. Таходатчик выдает переменное напряжение примерно 36 вольт. При включении двигатель плавно набирает максимальные обороты и устойчиво их держит, при регулировке R1 ни чего не происходит, также при регулировках R3 и R21, двигатель на максимальных оборотах. Выпаивал R2 ставил перемычку, также выпаивал R35, ставил тоже перемычку, результат тот же двигатель на максимальных оборотах. На схеме указаны в двух местах напряжения, там где 12 вольт у меня 12,5 вольт, там где 24 в у меня 20 вольт. на 9 и 8 ноге микросхемы 15,6 вольт. пытался с помощью сопротивлений уменьшить напряжение с таходатчика с 36 вольт до 6,5 вольт и подключал светодиод дополнительный между 12 ногой и 8 ногой микросхемы, при максимальных оборотах двигателя напряжение между 12 и 8 ногой микросхемы всего 1,4 вольт. Все эти действия не к чему не привели, двигатель попрежнему работает на максимальных оборотах.

Самостоятельное изготовление регулятора оборотов электродвигателя

Регулятор оборотов в двигателе нужен для совершения плавного разгона и торможения. Широкое распространение получили такие приборы в современной промышленности. Благодаря им происходит измерение скорости движения в конвейере, на различных устройствах, а также при вращении вентилятора. Двигатели с производительностью на 12 Вольт применяются в целых системах управления и в автомобилях.

  • Устройство системы
    • Схема регулятора оборотов коллекторного двигателя
    • Зачем используют такой прибор-регулятор
  • Регулятор оборотов электродвигателя 220в
    • Как сделать регулятор своими руками
    • Внедрение системы управления
    • Регулировка работы

Устройство системы

Коллекторный тип двигателя состоит главным образом из ротора, статора, а также щёток и тахогенератора.

  1. Ротор — это часть вращения, статор — это внешний по типу магнит.
  2. Щётки, которые произведены из графита — это главная часть скользящего контакта, через которую на вращающийся якорь и стоит подавать напряжение.
  3. Тахогенератор —это устройство, которое производит слежку за характеристикой вращения прибора. Если происходит нарушение в размеренности процесса вращения, то он корректирует поступающий в двигатель уровень напряжения, тем самым делая его наиболее плавным и медленным.
  4. Статор. Такая деталь может включать в себя не один магнит, а, к примеру, две пары полюсов. Вместе с этим на месте статических магнитов здесь будут находиться катушки электромагнитов. Совершать работу такое устройство способно как от постоянного тока, так и от переменного.
Читайте также  Нужен ли автозапуск двигателя?

Схема регулятора оборотов коллекторного двигателя

В виде регуляторов оборотов электродвигателей 220 В и 380 В применяются особые частотные преобразователи. Такие устройства относят к высокотехнологическим, они и помогают совершить кардинальное преобразование характеристики тока (форму сигнала, а также частоту). В их комплектации имеются мощные полупроводниковые транзисторы, а также широтно-импульсный модулятор. Весь процесс осуществления работы устройства происходит с помощью управления специальным блоком на микроконтроллере. Изменение скорости во вращении ротора двигателей происходит довольно медленно.

Именно по этой причине частотные преобразователи применяются в нагруженных устройствах. Чем медленнее будет происходить процесс разгона, тем меньшая нагрузка будет совершена на редуктор, а также конвейер. Во всех частотниках можно найти несколько степеней защиты: по нагрузке, току, напряжению и другим показателям.

Некоторые модели частотных преобразователей совершают питание от однофазового напряжения (оно будет доходить до 220 Вольт), создают из него трехфазовое. Это помогает совершить подключение асинхронного мотора в домашних условиях без применения особо сложных схем и конструкций. При этом потребитель сможет не потерять мощность во время работы с таким прибором.

Зачем используют такой прибор-регулятор

Если говорить про двигатели регуляторов, то обороты нужны:

  1. Для существенной экономии электроэнергии. Так, не любому механизму нужно много энергии для выполнения работы вращения мотора, в некоторых случаях можно уменьшить вращение на 20−30 процентов, что поможет значительно сократить расходы на электроэнергию сразу в несколько раз.
  2. Для защиты всех механизмов, а также электронных типов цепей. При помощи преобразовательной частоты можно осуществлять определённый контроль за общей температурой, давлением, а также другими показателями прибора. В случае когда двигатель работает в виде определённого насоса, то в ёмкости, в которую совершается накачка воздуха либо жидкости, стоит вводить определённый датчик давления. Во время достижения максимальной отметки мотор попросту автоматически закончит свою работу.
  3. Для процесса плавного запуска. Нет особой необходимости применять дополнительные электронные виды оборудования — все можно осуществить при помощи изменения в настройках частотного преобразователя.
  4. Для снижения уровня расходов на обслуживание устройств. С помощью таких регуляторов оборотов в двигателях 220 В можно значительно уменьшить возможность выхода из строя приборов, а также отдельных типов механизмов.

Схемы, по которым происходит создание частотных преобразователей в электродвигателе, широко используются в большинстве бытовых устройств. Такую систему можно найти в источниках беспроводного питания, сварочных аппаратах, зарядках телефона, блоках питания персонального компьютера и ноутбука, стабилизаторах напряжения, блоках розжига ламп для подсветки современных мониторов, а также ЖК-телевизоров.

Регулятор оборотов электродвигателя 220в

Его можно изготовить совершенно самостоятельно, но для этого нужно будет изучить все возможные технические особенности прибора. По конструкции можно выделить сразу несколько разновидностей главных деталей. А именно:

  1. Сам электродвигатель.
  2. Микроконтроллерная система управления блока преобразования.
  3. Привод и механические детали, которые связаны с работой системы.

Перед самым началом запуска устройства, после подачи определённого напряжения на обмотки, начинается процесс вращения двигателя с максимальным показателем мощности. Именно такая особенность и будет отличать асинхронные устройства от остальных видов. Ко всему прочему происходит прибавление нагрузки от механизмов, которые приводят прибор в движение. В конечном счёте на начальном этапе работы устройства мощность, а также потребляемый ток лишь возрастают до максимальной отметки.

В это время происходит процесс выделения наибольшего количества тепла. Происходит перегрев в обмотках, а также в проводах. Использование частичного преобразования поможет не допустить этого. Если произвести установку плавного пуска, то до максимальной отметки скорости (которая также может регулироваться оборудованием и может быть не 1500 оборотов за минуту, а всего лишь 1000) двигатель начнёт разгоняться не в первый момент работы, а на протяжении последующих 10 секунд (при этом на каждую секунду устройство будет прибавлять по 100−150 оборотов). В это время процесс нагрузки на все механизмы и провода начинает уменьшаться в несколько раз.

Как сделать регулятор своими руками

Можно совершенно самостоятельно создать регулятор оборотов электродвигателя около 12 В. Для этого стоит использовать переключатель сразу нескольких положений, а также специальный проволочный резистор. При помощи последнего происходит изменение уровня напряжения питания (а вместе с этим и показателя частоты вращения). Такие же системы можно применять и для совершения асинхронных движений, но они будут менее эффективными.

Ещё много лет назад широко использовались механические регуляторы — они были построены на основе шестеренчатых приводов или же их вариаторов. Но такие устройства считались не очень надёжными. Электронные средства показывали себя в несколько раз лучше, так как они были не такими большими и позволяли совершать настройку более тонкого привода.

Для того чтобы создать регулятор вращения электродвигателя, стоит использовать сразу несколько устройств, которые можно либо купить в любом строительном магазине, либо снять со старых инвенторных устройств. Чтобы совершить процесс регулировки, стоит включить специальную схему переменного резистора. С его помощью происходит процесс изменения амплитуды входящего на резистор сигнала.

Внедрение системы управления

Чтобы значительно улучшить характеристику даже самого простого оборудования, стоит в схему регулятора оборотов двигателя подключить микроконтроллерное управление. Для этого стоит выбрать тот процессор, в котором есть подходящее количество входов и выходов соответственно: для совершения подключения датчиков, кнопок, а также специальных электронных ключей.

Для осуществления экспериментов стоит использовать особенный микроконтроллер AtMega 128 — это наиболее простой в применении и широко используемый контроллер. В свободном использовании можно найти большое число схем с его применением. Чтобы устройство совершало правильную работу, в него стоит записать определённый алгоритм действий — отклики на определённые движения. К примеру, при достижении температуры в 60 градусов Цельсия (замер будет отмечаться на графике самого устройства), должно произойти автоматическое отключение работы устройства.

Регулировка работы

Теперь стоит поговорить о том, как можно осуществить регулировку оборотов в коллекторном двигателе. В связи с тем, что общая скорость вращения мотора может напрямую зависеть от величины подаваемого уровня напряжения, для этого вполне пригодны совершенно любые системы для регулировки, которые могут осуществлять такую функцию.

Стоит перечислить несколько разновидностей приборов:

  1. Лабораторные автотрансформеры (ЛАТР).
  2. Заводские платы регулировки, которые применяются в бытовых устройствах (можно взять даже те, которые используются в пылесосах, миксерах).
  3. Кнопки, которые применяются в конструкции электроинструментов.
  4. Бытовые разновидности регуляторов, которые оснащены особым плавным действием.

Но при этом все такие способы имеют определённый изъян. Совместно с процессами уменьшения оборотов уменьшается и общая мощность работы мотора. Иногда его можно остановить, даже просто дотронувшись рукой. В некоторых случаях это может быть вполне нормальным, но по большей части это считается серьёзной проблемой.

Наиболее приемлемым вариантом станет выполнение функции регулировки оборотов при помощи применения тахогенератора.

Его чаще всего устанавливают на заводе. Во время отклонения скорости вращения моторов через симистры в моторе будет происходить передача уже откорректированного электропитания, сопутствующего нужной скорости вращения. Если в такую ёмкость будет встроена регулировка вращения самого мотора, то мощность не будет потеряна.

Как же это выглядит в виде конструкции? Больше всего используется именно реостатная регулировка процесса вращения, которая создана на основе применения полупроводника.

В первом случае речь пойдёт о переменном сопротивлении с использованием механического процесса регулировки. Она будет последовательно подключена к коллекторному электродвигателю. Недостатком в этом случае станет дополнительное выделение некоторого количества тепла и дополнительная трата ресурса всего аккумулятора. Во время такой регулировки происходит общая потеря мощности в процессе совершения вращения мотора. Он считается наиболее экономичным вариантом. Не используется для довольно мощных моторов по вышеуказанным причинам.

Во втором случае во время применения полупроводников происходит процесс управления мотором при помощи подачи определённого числа импульсов. Схема способна совершать изменение длительности таких импульсов, что, в свою очередь, будет изменять общую скорость вращения мотора без потери показателя мощности.

Если вы не хотите самостоятельно изготавливать оборудование, а хотите купить уже полностью готовое к применению устройство, то стоит обратить особое внимание на главные параметры и характеристики, такие, как мощность, тип системы управления прибором, напряжение в устройстве, частоту, а также напряжение рабочего типа. Лучше всего будет производить расчёт общих характеристик всего механизма, в котором стоит применять регулятор общего напряжения двигателя. Стоит обязательно помнить, что нужно производить сопоставление с параметрами частотного преобразователя.