Принцип работы автоматической коробки передач с гидротрансформатором

«Бублик», убийца АКПП: что ломается в гидротрансформаторах и как их чинят

Гидротрансформатор, он же «бублик» (прозвище пошло от его формы), является непременным атрибутом любого «настоящего автомата». Не обходятся без него и мощные вариаторы, и даже в преселективную АКПП его поставили на некоторых моделях Honda (например на Acura TLX), чтобы обеспечить мягкость движения на малой скорости. И иногда он выходит из строя.

Казалось бы, это чисто гидравлический узел и ломаться там нечему, разве что протечь может… Но нет, современный гидротрансформатор много сложнее в устройстве, чем картинка в старом учебнике и скорее является узлом с ограниченным сроком службы, после чего должен пройти процедуру восстановления. Что же с ним происходит, что у него внутри и как это починить?

Как устроен «бублик»?

Основной задачей гидротрансформатора всегда было преобразование крутящего момента и оборотов: он работает как гидравлический редуктор, который умеет снижать обороты и повышать крутящий момент с коэффициентом трансформации до 2.4. Основана его работа на передаче энергии через поток жидкости — в данном случае трансмиссионного масла, которое мы все знаем как ATF (automatic transmission fluid).

Коленчатый вал мотора связан с насосным колесом, которое разгоняет жидкость и отправляет ее на турбинное колесо. Турбинное колесо в свою очередь связано с коробкой передач. Жидкость раскручивает турбинное колесо и отправляется обратно на насосное. Но перед этим она попадает на лопатки направляющего аппарата, выполненного в виде колеса-реактора, которые ускоряют поток жидкости и направляют его в сторону вращения.

Таким образом поток жидкости ускоряется до тех пор, пока скорости вращения насосного и турбинного колес не выравниваются, и тогда гидротрансформатор переходит в режим гидромуфты, при котором преобразования крутящего момента не происходит, а направляющий аппарат начинает свободно вращаться, не мешая току жидкости.

Чем больше разница скоростей вращения турбинного и насосного колес, тем больше ускоряется ток жидкости, но при этом она начинается нагреваться, а КПД гидротрансформатора падает — больше энергии уходит в нагрев. Когда же скорости вращения колес выравниваются, то в передаче момента через жидкость с большими потерями смысла нет.

Поэтому со временем в гидротрансформаторы стали внедрять элементы обычного фрикционного сцепления, основанного на трении. Называется это блокировкой гидротрансформатора. Суть блокировки — в соединении входного и выходного валов, чтобы передавать момент напрямую. Без нее старые машины с АКПП, как говорится, «не ехали».

На самых старых конструкциях блокировка срабатывала автоматически, за счет давления рабочей жидкости, но с появлением АКПП с электронным управлением функция стала управляться отдельным клапаном. Говорить же о способах реализации блокировки нужно в отдельной статье, потому что их великое множество. Но смысл один — соединять валы и временно исключать из цепочки передачи крутящего момента трансмиссионное масло.

А вскоре на фрикционы блокировки возложили задачи, сходные с задачами обычного сцепления механической КПП — при разгоне они немного смыкались, пробуксовывая и помогая передавать крутящий момент, а сама блокировка стала срабатывать очень рано, чтобы уменьшить потери в гидротрансформаторе. Собственно, современные гидромеханические «автоматы» уже нельзя назвать классическими — это уже некий гибрид.

И чем мощнее становились двигатели, тем сильнее нагревалась жидкость в ГТД, тем сложнее было обеспечить его охлаждение, и тем больше работы по передаче крутящего момента старались переложить на сцепление блокировки.

Что ломается в гидротрансформаторе?

Раз есть сцепление внутри «бублика», значит, оно изнашивается — вечных фрикционных пар не бывает. К тому же продукты их износа загрязняют внутренности ГТД, поток горячей жидкости с абразивом «выедает» металл лопаток и других внутренних частей. Также потихоньку стареют, выходят из строя от перегрева или просто разрушаются уплотнения-сальники, а иногда выходят из строя подшипники или даже ломаются лопасти турбинных колес.

Продукты износа фрикционной накладки попадают и в саму АКПП, ведь охлаждение ГТД идет прокачкой масла через насос коробки и общий теплообменник. А в гидроблоке АКПП (о нем нужно рассказывать отдельно) есть еще много разных мест, где грязь может что-то забить или жидкость может проточить лишние отверстия, повредить соленоидные клапаны, замкнуть проводники…

В общем, со временем ГТД становится основным источником «грязи» в АКПП, которая обязательно выведет ее из строя. У некоторых АКПП проблема осложняется тем, что материал накладок «приклеен» к основе, и по мере износа в жидкость начинают попадать клеющие вещества, ускоряя процессы загрязнения в разы.

Таким образом, поживший «бублик» нужно менять или ремонтировать, пока он не сломал всю коробку передач. К слову, старые АКПП, у которых блокировка срабатывала редко, только на высших передачах или ее не имелось вовсе, имеют заметно большие интервал замены масла и ресурс.

Наиболее печальный случай

К чему это приводит, можно увидеть на примере широко распространенной 5-ступенчатой АКПП Mercedes 722.6. Она ставилась на несколько десятков моделей Mercedes-Benz, Jaguar, Chrysler, Dodge, Jeep и SsangYong c 1996 года и ставится по сей день.

В этой коробке передач гидротрансформатор блокируется на всех передачах, и специальный клапан регулирует его прижатие. Даже при плавном разгоне включается частичная блокировка, а при резком блокировка включается почти сразу. Машина получается экономичной и динамичной.

Устройство и принцип работы гидротрансформатора (бублика) АКПП

Гидротрансформатор является важнейшей деталью автомобиля, осуществляющей передачу и преобразование вращающего момента между двигателем и коробкой. Несмотря на достаточное простое устройство агрегата и его высокую надежность, он подвержен возникновению различных видов неисправностей, своевременное устранение которых снизит стоимость ремонта и продлит ресурс остальных деталей узла. Соблюдение небольшого количества рекомендаций продлит жизнь бублику.

Зачем нужен гидротрансформатор (бублик) в АКПП

Гидравлический трансформатор является одним из важнейших агрегатов автомобиля, обеспечивающий связь между мотором и трансмиссией, по сути выполняющий функции сцепления и некоторые другие.

Из-за внешнего сходства с хлебобулочным изделием он получил название «бублик» среди автомехаников.

Основные функции гидротрансформатора:

  • передача крутящего момента с его двукратным преобразованием в сторону увеличения;
  • частичное выполнение функции сцепления как в МКПП, при изменении ступеней бублик разрывает прямую связь ДВС и трансмиссии;
  • защита АКПП при быстром наборе скорости и торможении двигателем;
  • при смене передачи гидравлический трансформатор частично забирает крутящий момент на себя, обеспечивая плавную смену ступеней.

Устройство и принцип работы Бублика

Гидротрансформатор расположен между ДВС и трансмиссией и является составной частью АКПП, несмотря на нахождение вне нее (крепится к картеру планетарной коробки).

Бублик обеспечивает гидравлическое сцепление между мотором и трансмиссией посредством давления трансмиссионной жидкости, находящейся в нем (практически идентично работе ветряной мельницы).

  • реактор (статор);
  • кожух;
  • центробежный насос (насосное колесо);
  • обгонная муфта;
  • центростремительная турбина (турбинное колесо);
  • блокирующий механизм;
  • муфта свободного хода.

Бублик со стороны двигателя жестко крепится к коленчатому валу, а со стороны КПП – к ее валу. Трансмиссионное масло нагнетается внутрь бублика при помощи масляной помпы, которая поддерживает требуемое давление жидкости в устройстве.

Передача крутильного момента осуществляется за счет движения потоков трансмиссионной жидкости и давления, образованного их движением.

Режимы

При запуске ДВС в бублик подается рабочая жидкость при помощи специальной помпы и возрастает давление. Центробежное колесо начинает крутиться, статор и центростремительная турбина пока неподвижны.

Режимы работы бублика:

  1. Трансформация. При изменении положения селектора и увеличения подачи топливной смеси при нажатии на педаль газа осуществляется возрастание оборотов насосного колеса за счет движения коленвала. Увеличивающееся движение трансмиссионной жидкости запускает вращение турбинного колеса. Вихревые потоки трансмиссионной жидкости то перекидываются к неподвижному реакторному колесу, то возвращаются к турбинному, повышая его КПД. Крутильный момент передается на ведущие колеса, и автомобиль начинает ехать. В реакторе находится обгонная муфта, которая при значительной разнице во вращении насоса и турбины блокирует вращательное движение статора и осуществляется прямая передача вращающего момента двигателя на АКПП, специальные лопасти реакторного колеса повышают скорость потока от центростремительной турбины и возвращают его на центробежный насос, повышая крутящий момент. Если усиливается противодействие движению (подъем на горку), статор прекращает вращательное движение и увеличивает передачу вращательного момента насосному колесу. По достижении определенных параметров (необходимой скорости и величины вращающего момента) осуществляется смена ступени в АКПП.
  2. Гидромуфта. На определенной скорости синхронизируется вращение центробежного насоса и турбинного колеса, и потоки рабочей жидкости попадают на статор с обратной стороны, при котором движение осуществляется только в одном направлении. Устройство переходит в режим работы гидромуфты.
  3. Блокировка. При достижении определенных параметров электроника блокирует гидравлический трансформатор при помощи фрикционного диска и осуществляется прямая жесткая передача вращающего момента без потери мощности.

При смене ступеней бублик отключается для обеспечения плавности, затем снова начинает работать. С помощью такого процесса исключается вероятность «проскальзывания», повышается ресурс гидротрансформатора, снижается потеря мощности и уменьшается расход топливной смеси.

Электронный блок управления осуществляет моментальное изменение режима функционирования бублика, адаптируя его работу под изменившиеся условия.

Читайте также  Коробка dsg плюсы и минусы

Неисправности гидротрансформатора

АКПП с гидротрансформатором является надежным агрегатом, но иногда встречаются поломки как в планетарном узле, так и в бублике.

Симптомы неисправности гидравлического трансформатора:

  • незначительное пробуксовывание при начале движения;
  • вибрации и жужжание при движении транспортного средства;
  • толчки при смене положения рычага селектора;
  • механические шумы и стуки;
  • снижение разгонных характеристик;
  • запах расплавленной пластмассы;
  • при выборе ступеней мотор глохнет;
  • появление металлической стружки на щупе;
  • снижение уровня трансмиссионной жидкости;
  • шуршание в области бублика, которое может исчезнуть при начале движения.

Основные поломки гидротрансформатора:

  1. Повышенный износ опорных или промежуточных подшипников. При работе автомобиля в холостом режиме появляется характерный незначительный механический шум, исчезающий по мере увеличения скорости движения транспорта. Устраняется заменой вышедших из строя деталей.
  2. Вибрация, сначала появляющаяся при движении на высокой скорости, со временем увеличивающаяся и возникающая при всех режимах движения машины. Причиной этого является снижение свойств рабочей жидкости и загрязненность масляного фильтра. Лечится заменой старой трансмиссионной жидкости на новую качественную ATF жидкость, установкой нового фильтра.
  3. Падение разгонных характеристик автомобиля. Происходит из-за высокого износа обгонной муфты, вызывающей прекращение функционирования статора бублика и невозможности повышения вращающего момента. Для устранения неисправности необходимо заменить поврежденную деталь.
  4. При движении возникает сильный металлический стук и скрежет. Причиной такой поломки является разрушение лопастей насоса, турбины или статора. Данная неисправность устраняется заменой вышедших из строя составляющих или установкой нового гидротрансформатора.
  5. Запах расплавленного пластика возникает из-за перегрева агрегата, причиной которого может стать снижение уровня рабочей жидкости, засоренность охлаждающей системы коробки. Для устранения последствий перегрева необходимо заменить поврежденные пластиковые компоненты, прочистить систему охлаждения АКПП и полностью обновить трансмиссионную жидкость.
  6. Появление мелкой металлической стружки на щупе указывает в большинстве случаев на высокий износ торцевой шайбы. Эта неисправность устраняется путем установки новой детали, взамен поврежденной, и обновлением рабочей жидкости для удаления стружки.
  7. Машина глохнет при изменении режима функционирования АКПП или смене положения селектора. Причиной этого являются сбои в работе электроники, приводящие к блокировке бублика. Для устранения данной неисправности необходима профессиональная диагностика блока управления АКПП, при необходимости замена вышедших из строя электронных проборов.
  8. Прекращение движения транспортного средства. Происходит из-за отсутствия передачи вращающего момента от мотора к АКПП вследствие срезания шлиц на центростремительной турбине. В редких случаях подобная неисправность возникает при сбоях в электронном управлении. Проблема устраняется восстановлением шлиц (при возможности — это осуществить) или установкой нового гидравлического трансформатора.
  9. Уменьшение уровня рабочей жидкости. Причиной этого является нарушение герметичности корпуса (течи в районе сальников и уплотнителей). Устраняется заделыванием места протекания, заменой протекающих компонентов или установкой нового бублика.

При появлении любого из вышеперечисленных симптомов необходимо срочно обратиться на станцию техобслуживания для проведения диагностических процедур и осуществления ремонта узла или его замены. Своевременный ремонт гидротрансформатора позволит избежать возникновения дальнейших поломок и существенно сократит затраты на ремонт АКПП.

Самостоятельный ремонт бублика достаточно сложная процедура из-за цельности и герметичности агрегата. Для замены вышедших из строя деталей следует аккуратно разрезать корпус, а после ремонта тщательно и герметично запаять.

В некоторых случаях при наличии серьезных и многочисленных повреждений различных составляющих гидравлического трансформатора со стороны финансовой составляющей проблемы бывает дешевле установить новый агрегат, чем устранять неисправности в старом.

Как продлить жизнь гидромуфте Автоматической КПП

Соблюдение определенных правил позволит увеличить ресурс работы гидротрансформатора.

Основные рекомендации для продления эксплуатационного периода бублика:

  • при отрицательной температуре внешней среды необходимо прогревать АКПП в холостом режиме в течение 7-10 минут для достижения рабочей температуры трансмиссионного масла и, как следствие, улучшения свойств рабочей жидкости;
  • при буксировании транспортного средства или езде по скользким поверхностям необходимо правильно выбирать режим для снижения вероятности проскальзывания бублика;
  • регулярная проверка уровня рабочей жидкости и ее состояния;
  • своевременно менять трансмиссионную жидкость, выбирая качественную и соответствующую типу АКПП;
  • плавный выбор ступеней с задержкой в 2-3 секунды;
  • замена масляного фильтра АКПП по мере необходимости;
  • своевременная замена прокладок и сальников бублика при пробеге свыше 150000 километров или агрессивной манере езды с повышенной нагрузкой на гидротрансформатор.

Несмотря на простоту узла и его надежность, гидротрансформатор подвержен ряду поломок с характерными для них признаками.

Для увеличения эксплуатационного периода бублика необходимо своевременно проводить диагностику и ремонт узла при появлении даже малейших симптомов неисправностей и придерживаться некоторых рекомендаций, способных заметно продлить жизнь гидротрансформатору.

Принцип действия АКПП

Оставьте заявку и получите диагностику АКПП в подарок

    ГлавнаяСтатьиДиагностика Принцип действия АКПП

Из чего состоит автоматическая коробка передач

Автоматическая коробка переключения передач (АКПП) является важнейшим элементом трансмиссии современного автомобиля, главное предназначение которого – прием, передача, изменение крутящего момента, направления и скорости движения. Рассмотрим устройство и принцип работы коробки автомата.
Основные узлы АКПП:

  1. Гидротрансформатор – устройство, которое с помощью рабочей жидкости преобразует и передает крутящий момент от входного вала.
  2. Планетарный редуктор – главный механизм АКПП, который представляет собой несколько систем шестерней, каждая система состоит из «солнечной шестерни», сателлитов, планетарного водила и коронной шестерни. Редуктор получает крутящий момент от гидротрансформатора и изменяет его, в соответствии с условиями движения.
  3. Система гидравлического управления (гидроблок) – сложный механический комплекс, предназначенный для управления планетарной системой.
  4. Устройства переключения передач – пакеты фрикционов, тормозная лента.

АКПП в разрезе:

Рассмотрим перечисленные узлы более подробно.

1. Гидротрансформатор.

Гидротрансформатор выполняет функции сцепления и служит для передачи крутящего момента от двигателя на трансмиссию. Основной элемент гидротрансформатора – гидромуфта, представляет собой два лопастных колеса, расположенные друг перед другом на минимальном расстоянии. Одно колесо, соединенное с маховиком двигателя, получило название насосное колесо. Другое, турбинное колесо соединяется с помощью вала с планетарным механизмом. Пространство между колесами заполнено рабочей жидкостью — трансмиссионным маслом. Под воздействием центробежной силы вязкая рабочая жидкость плавно вовлекает в движение турбинное колесо. Таким образом, между ведущим и ведомым валом нет жесткой связи, и как следствие – обеспечивается плавная передача вращения, без рывков и толчков.

Принцип работы гидромуфты:

По своей функциональности гидротрансформатор представляет собой гидромуфту, дополнительно оборудованную центральным лопастным колесом – реактором (статором). В начале движения реактор неподвижен, т.к его лопасти расположены под определенным углом, который расчитан так, чтобы удерживать отраженную от турбинного колеса рабочую жидкость. Если реактор отсутствует, то отраженная от турбины жидкость будет тормозить насосное колесо. Когда обороты насоса и турбины выравниваются (точка сцепления), реактор также начинает вращаться с той же скоростью – гидротрансформатор переходит в режим гидромуфты, т.е не усиливая, а только передавая крутящий момент.

Принцип работы гидротрансформатора:

2. Планетарный редуктор.

Планетарный редуктор состоит из следующих частей:

2.1. Планетарные элементы.

2.2. Муфты сцепления и тормоза.

2.3. Ленточные тормоза.

Планетарный элемент состоит из центрального узла – солнечной шестерни, вокруг которой расположены шестерни – сателлиты, которые устанавливаются на планетарное водило. С внешней стороны сателлиты сцеплены с коронной шестерней.

Планетарная передача:

Для переключения скорости в автомате с тремя передачами используется 2 планетарных ряда, а в АКПП с четырьмя передачами – 3 планетарных ряда.

Муфта сцепления состоит из чередующихся дисков и пластин, которые вращаются вместе с ведущим валом, а диски соединены с элементом планетарного ряда и приводятся в действие гидравлическим давлением.

Ленточный тормоз состоит из тормозной ленты и тормозного барабана. Один конец тормозной ленты жестко крепится к картеру АКПП, а второй соединен через рычажный механизм с поршнем гидропривода.

Принцип работы первой передачи:

  1. Солнечная шестерня приводится в движение гидротрансформатором.
  2. Сателлиты блокируются, вращение передается на коронную шестерню.
  3. Передаточное число: — 2.4:1.
  4. Т.к в коробке используется минимум 2 планетарных ряда, то первый ряд вращает второй, а со второго вращение передается на выходной вал.

Принцип работы второй передачи:

Вторая передача реализуется с помощью двух планетарных рядов.

  1. Солнечная шестерня первого планетарного ряда приводит в движение сателлиты и водило, а коронная шестерня блокируется тормозной лентой. Передаточное число первого планетарного ряда: 2.2 : 1.
  2. Водило с сателлитами первого планетарного ряда передает вщращение на второй планетарный ряд, в котором солнечная шестерня заблокирована. Коронная шестерня второго ряда является выходом.

Передаточное число первого планетарного ряда: 0.67:1.

Общее передаточное число второй передачи: 2.2 х 0.67 = 1.47:1.

Принцип работы третьей передачи:

  1. Блокируется коронная шестерня
  2. Блокируются сателлиты. Такая конфигурация приводит к вращению всей планетарной системы как единого целого и обеспечивает передаточное число 1:1.

Принцип работы четвертой передачи:

Эта передача с повышенной скоростью вращения, обеспечивает скорость выходного вала выше чем скорость входного.

Солнечная шестерня вращается свободно, коронная шестерня заблокированна тормозной лентой. Передаточное число: 0.67:1.

Принцип работы задней передачи:

  1. Солнечная шестерня второго планетарного ряда приводится в движение входным валом, а водило сателлитов удерживается тормозной лентой.
  2. Солнечная шестерня первого планетарного ряда получает вращение от второго, но имеет противоположное направление. Передаточное число: -2:1.
Читайте также  Как управлять машиной с автоматической коробкой передач?

3. Гидравлическая система управления.

Гидравлическая система управления (ГСУ) АКПП предназначена для автоматического управления трансмиссией. Изначально гидросистема осуществляла все управляющие и контрольные функции в АКПП во время движения: формировала все необходимые давления, определяла моменты переключения и качество переключения передач и т.д. С появлением электронных блоков управления гидросистема «делегировала» большинство своих функций электронике, играя роль, скорее, исполнительной системы.

ГСУ представляет собой комплекс, состоящий из резервуара (поддона с магнитом для сбора металлической стружки – результат износа элементов автомата), масляного насоса, центробежного регулятора, системы клапанов, исполняющих устройств и масляных каналов (магистралей). Очень важно, чтобы в резервуаре (поддоне или картере трансмиссии) всегда находился строго определенный уровень масла. Масло в системе выполняет функцию смазки, охлаждения и является рабочей жидкостью для системы автоматического переключения передач. Поддон через канал для щупа имеет доступ к атмосферному воздуху, чтобы насос мог втягивать масло и передавать его в систему. Масло проходит через фильтр и создает гидравлическое давление (рабочее давление), величина которого управляется регулятором давления.

Регулятор давления это клапан золотникового типа с пружиной, которая, в зависимости от своей жесткости, задает величину давления.

Регулятор давления:

В начальный момент пружина устанавливает клапан в крайнее левое положение, происходит открытие входного отверстия и перекрытие выходного. Жидкость продолжает поступать, давление увеличивается до тех пор, пока не сдвигается пружина. Клапан сдвигается вправо, открывая выходное отверстие и давление начинает падать. Затем процесс повторяется снова. В некоторых регуляторах давления вместо пружины используется дроссельное давление, что позволяет на выходе клапана получать рабочее давление, зависящее от режима работы двигателя.

В гидросистемах с электронным блоком управления давление регулируется электромагнитными клапанами или соленоидами. Соленоид управляется электрическими сигналами, параметры которых меняются в зависимости от скорости движения автомобиля, угла открытия дроссельной заслонки и других характеристик. Как и механические клапана, соленоиды постоянно находятся в циклическом режиме «Вкл»-«Выкл».

В зависимости от назначения клапана бывают:

  1. Предохранительные, для защиты от высокого давления.
  2. Управляющие потоками жидкости в каналах.
  3. Одноходовые управляют потоком в одной магистрали.
  4. Двухходовые управляют потоком в двух магистралях.
  5. Клапан выбора режима связан с рычагом селектора режимов.
  6. Клапан переключения для управления переключением передач.

Большая часть клапанов гидравлической системы управления расположена в клапанной коробке, корпус которой обычно изготовлен из сплава алюминия. Насос всасывает масло из поддона, которое, пройдя регулятор давления, попадает в клапанную коробку, весь корпус которой состоит из каналов разнообразной формы (гидроплита).

Каналы гидроплиты:

В клапанной коробке происходит перераспределение потока жидкости к соответствующим сервоприводам (гидроцилиндрам и бустерам), с помощью которых происходит управление фрикционными муфтами и тормозами.

Гидроцилиндр – исполнительный механизм системы управления АКПП, который преобразует давление рабочей жидкости в механическую работу, Давление жидкости вызывает перемещение поршня, тем самым включая и выключая фрикционные элементы управления. Обычно, гидроцилиндр используется для включения ленточного тормоза, а для блокировочной муфты или для дискового тормоза применяется бустер.

Гидроцилиндр и бустер:

4. Фрикционные диски.

Фрикционы (фрикционные диски) выполняют функции сцепления передач в АКПП. Представляют собой тонкие кольца двух видов: подвижные мягкие (соединены с шестерней) и металлические (неподвижно соединены с корпусом редуктора). Кольца устанавливаются на планетарные редукторы. При выключенной передаче кольца свободно вращаются относительно друг друга. В тот момент, когда передача включается, через систему управления на гидравлический цилиндр подается рабочая жидкость и фрикционные диски сжимаются, активируя нужную шестерню. Активировав или заблокировав ту или иную шестерню планетарного ряда, можно менять передаточное число механизма, и, как следствие — скорость вращения вала.

Для лучшего понимания работы АКПП рекомендуем к просмотру видео (3-D модель):

Для закрепления информации — посмотрите видео (2-D модель):

Устройство, принцип работы, неисправности гидротрансформатора АКПП

Сейчас большая часть автомобилей выпускается с автоматическими коробками передач или же вариаторами, поскольку эти типы трансмиссии отличаются удобством пользования по сравнению с механической коробкой.

Какую роль играет гидротрансформатор

Чтобы обеспечить плавность переключения передач и обеспечения беспрерывной передачи крутящего момента (для вариатора) используется совсем иной вид сцепления.

В автомобилях с вариатором и АКПП в качестве сцепления – элемента, передающего крутящий момент от силовой установки на коробку передач, выступает гидротрансформатор.

Особенность этого элемента, входящего в конструкцию трансмиссии, заключается в том, что передача усилия происходит посредством жидкости, то есть, жесткой связи между мотором и КПП нет (хотя это не совсем так).

Гидротрансформатор позволяет осуществить бесступенчатую передачу усилия, причем с возможностью изменения крутящего момента и скорости вращения.

Также в момент изменения ступени (в АКПП) гидротрансформатор позволяет разъединить между собой мотор и трансмиссию, а после плавно возобновить передачу усилия.

По сути устройство выполняет роль сцепления, но с некоторыми дополнительными функциями.

Устройство, принцип работы, режимы

Конструкция гидротрансформатора включает в себя всего несколько элементов:

  • Насосное колесо;
  • Турбинное колесо;
  • Статор, он же – реактор;
  • Корпус;
  • Механизм блокировки;

Монтируется гидротрансформатор на маховике двигателя, но одна из составляющих его имеет жесткую связь с валом коробки передач.

Если провести аналогию этого типа передачи с обычным сцеплением фрикционного типа, то насосное колесо выполняет роль ведущего диска (жестко соединено с коленчатым валом мотора), а турбинное – ведомого (прикрепленного к валу КПП). Вот только физического контакта между этими колесами нет.

Примечательно, что даже расположение этих колес идентично фрикционному сцеплению – турбинное колесо располагается между маховиком и насосным колесом.

Все составные части гидротрансформатора заключены в герметичный корпус, заполненный специальной рабочей жидкостью — маслом ATF. За счет своей формы этот элемент трансмиссии получил народное название «бублик».

Суть работы гидротрансформатора очень проста. На колесах устройства имеются лопасти, которые перенаправляют жидкость в определенном направлении.

Вращаясь вместе с маховиком, насосное колесо создает поток жидкости и направляет его на лопасти турбины, тем самым и обеспечивается передача усилия.

Если бы конструкция включала только эти два колеса, то гидротрансформатор не отличался бы от гидромуфты, у которой вращающий момент на обеих составляющих практически одинаков.

Но в задачу гидротрансформатора входит не только передача усилия, а и его изменение.

Так, при старте необходимо обеспечить увеличение крутящего момента на ведомом колесе (при начале движения), а во время равномерного движения – исключить так называемое «проскальзывание».

Для выполнения этих функций в конструкции предусмотрены реактор и механизм блокировки.

Реактор представляет собой еще одно лопастное колесо, но значительно меньшего диаметра и располагается оно между турбиной и насосом, с последним реактор связан посредством обгонной муфты.

В задачу этого элемента входит увеличение скорости потока жидкости, что и приводит к повышению крутящего момента.

Работает реактор так: при возникновении большой разницы между основными колесами гидротрансформатора, обгонная муфта блокирует реактор, не давая ему вращаться (из-за этого еще одно название составляющей – статор).

При этом его лопасти, имеющие специальную форму, увеличивают скорость движения потока жидкости, попадающего на него после прохождения турбинного колеса, и направляют его снова на насос.

Таким образом реактор значительно повышает крутящий момент, необходимый для создания достаточного усилия при начале движения.

При равномерном движении гидротрансформатор блокируются, то есть в нем появляется жесткая связь, и делает это используемый в конструкции механизм блокировки.

Ранее в АКПП эта составляющая срабатывала только на повышенных скоростях движения. Сейчас же, используемые электронные системы управления коробкой блокируют гидротрансформатор практически на всех ступенях.

То есть, как только крутящий момент для определенной передачи подходит к требуемым параметрам, механизм срабатывает.

При смене ступени он отключается, чтобы обеспечить плавность переключения и снова включается. Тем самым исключается вероятность «проскальзывания» гидротрансформатора, что повышает его ресурс, снижает потери усилия и уменьшает потребление топлива.

Примечательно, что механизм блокировки, по сути, представляет собой фрикционное сцепление, и работает он по тому же принципу. То есть в конструкции имеется фрикционный диск, который закреплен на турбине.

В отключенном состоянии блокировочного механизма этот диск находится в отжатом состоянии. При включении же блокировки, фрикционы прижимаются к корпусу гидротрансформатора, тем самым и достигается жесткая передача крутящего момента от мотора на КПП.

В целом, если рассмотреть функционирование гидротрансформатора, то существует три режима его работы:

  • Трансформация (включается, когда требуется повышение крутящего момента для создания большего усилия. В этом режиме работает реактор, обеспечивая повышение скорости движения потока);
  • Гидромуфта (в этом режиме реактор не задействован и вращающий момент на ведущем и ведомом колесе практически одинаков);
  • Блокировка (турбина жестко связана с корпусом для уменьшения потерь на «проскальзывание»).

Используемая для управления работой гидротрансформатора электронная система обеспечивает очень быструю смену режима его работы, подстраивая функционирование этого элемента под возникающие условия.

Особенности гидротрансформаторов разных авто

Несмотря на то, что многие автопроизводители стараются внести свои какие-то конструктивные особенности в устройство элементов трансмиссии, гидротрансформатор у всех практически идентичен.

Разница если и есть, то она обычно сводится к каким-то мелким деталям, а также материалам изготовления составляющих частей.

Читайте также  Есть ли сцепление в коробке автомат?

К примеру, в автомобилях Субару, «слабым местом» гидротрансформатора является фрикционная накладка механизма блокировки. Особенно такая неисправность проявляется на авто, оснащенных АКПП последнего поколения.

На BMW, оснащавшихся коробками ZF, у многих автовладельцев отмечались проблемы с электронной системой управления, что приводило к появлению вибраций на определенных скоростях, ударов при переключении и т. д.

То есть, все проблемы с гидротрансформатором возникали из-за неправильного его управления.

Стоит отметить, что из-за этого и сама КПП работала проблемно, поэтому выявить причину очень сложно.

На автомобилях Мазда с автоматическими коробками самой частой проблемой гидротрансформатора является быстрый износ обгонной муфты реактора.

И так практически с каждой маркой авто – обязательно найдется какой-то конкретный составной элемент устройства, который выходит из строя чаще всего.

Неисправности узла

Хоть сам гидротрансформатор обладает не особо сложной конструкцией, с не таким уж и большим количеством составных частей, неисправностей, который могут возникнуть с ним – немало. Частично про них уже упоминалось выше.

Поскольку этот элемент является связующим звеном между силовым агрегатом и КПП, то в проблемы в его работе сразу же сказываются на функционировании трансмиссии.

Основными поломками гидротрансформатора являются:

  • Износ подшипников — опорных или промежуточного (между турбиной и насосом). Проявляется эта неисправность в виде появления негромкого шуршащего звука при работе трансмиссии без нагрузки. По мере увеличения скорости этот звук пропадает, но постепенно диапазон режимов работы АКПП, при которых звук присутствует, будет расширятся. Устраняется эта проблема разборкой, дефектовкой и заменой изношенных элементов;
  • Сильная засоренность масляного фильтра. Сопровождается эта проблема появлением вибрации – сначала на высоких скоростях, затем практически на всех режимах, причем сама вибрация будет увеличиваться. Устраняется неисправность заменой фильтрующего элемента и рабочей жидкости;
  • Износ или повреждение обгонной муфты. Из-за этого не работает реактор, поэтому увеличение крутящего момента не происходит. В результате у автомобиля падает динамика набора скорости. «Лечится» проблема заменой муфты;
  • Обрыв шлицевого соединения турбинного колеса с валом КПП. Итогом такой поломки является прекращение движения, поскольку на коробку вращение просто не передается. Устраняется неисправность восстановлением шлицевого соединения (в некоторых случаях – заменой гидротрансформатора);
  • Разрушение лопастей колес или реактора. Сопровождается неисправность появление громкого металлического скрежета и стука. Ремонт в этом случае состоит из замены поврежденных составляющих или всего узла в сборе;
  • «Масляное голодание». Недостаток масла приводит к перегреву, оплавлению пластиковых элементов. Последствия недостатка смазочного материала могут быть самыми серьезными, поэтому восстановить работоспособность трансмиссии вместе с гидротрансформатором восстановлением уровня АТФ не получится, обязательно нужна будет разборка узлов, оценка состояния элемента и замена поврежденных составляющих;
  • Перегрев. Происходит либо из-за «масляного голодания», либо по причине засоренности системы охлаждения КПП. Во втором случае требуется очистка радиатора, фильтров, замена рабочей жидкости;
  • Неисправность системы управления. Проявляется проблема путем самовольной остановки силовой установки при переключении ступеней АКПП. Устраняется неисправность диагностикой и заменой элементов электронной составляющей трансмиссии.

Стоит заметить, что указанный признаки тех или иных неисправностей можно считать косвенными, и по ним точно определить проблему с составляющими гидротрансформатора невозможно, тем более, что многие признаки присущи и поломкам автоматических коробок передач.

Читайте по теме: Неисправности АКПП, симптомы и способы устранения.

Поэтому точно сказать о причине неправильной работы трансмиссии можно только после снятия узлов – гидротрансформатора и КПП, с последующей диагностикой.

Напоследок отметим, что ремонт гидротрансформатора – операция сама по себе не сложная, поскольку конструкция узла – простая.

Проблема в проведении восстановительных работ заключается в другом – для его снятия необходимо разобрать практически всю трансмиссию, поскольку без демонтажа коробки до гидротрансформатора просто не добраться.

А для этого необходимо наличие специального оборудования, съемников, подъемников и прочего. Поэтому в гаражных условиях провести ремонт достаточно сложно.

Принцип работы и устройство гидротрансформатора АКПП

Идея внедрения гидродинамической передачи крутящего момента изначально принадлежит военным. Конструкторы искали способ повысить проходимость автомобилей путем уменьшения риска срыва верхнего слоя грунта. Осуществить эту цель помог гидродинамический трансформатор, который за счет проскальзывания насосного и турбинного колес позволял плавно передать крутящий момент на ведущие колеса. Давайте рассмотрим устройство, принцип работы и неисправности гидротрансформатора автоматической коробки передач (АКПП).

Устройство гидротрансформатора

  1. Насосное колесо посредством ступицы крепится к коленчатому валу. Скорость вращения насосного колеса всегда соответствует частоте вращения коленвала.
  2. Турбинное колесо связано с первичным валом АКПП, через который крутящий момент передается на редуктор, приводные валы и колеса.
  3. Реакторное колесо – закреплено на ступице турбинного колеса и служит для перенаправления потока рабочей жидкости от насосной части к турбинной и обратно. До момента выравнивания скоростей вращения колес перенаправление потока позволяет увеличить крутящий момент, передаваемый на выходной вал АКПП. Именно наличием реактора (статора) отличается работа гидротрансформатора от простейшей гидромуфты.
  4. Блокировочная плита с механизмом блокировки ГДТ служит для прямого соединения насосного и турбинного колес. При ее замыкании жидкость АТФ не участвует в передаче крутящего момента от коленвала к первичному валу коробки передач.

На маховик гидротрансформатора напрессован зубчатый венец. С его помощью стартер вращает коленчатый вал при запуске двигателя.

Как работает коробка автомат с гидротрансформатором?

Назначение гидротрансформатора АКПП – передавать крутящий момент и при необходимости отсоединять коленчатый вал от первичного вала коробки передач. В насосное колесо от масляного насоса подается рабочая жидкость (ATF), которая при его вращении центробежной силой выталкивается от центра к краям. Лопастные колеса гидропередачи образуют в плоскости оси вращения круг циркуляции жидкости АТФ. Созданный вихревой поток посредством лопастей воздействует на реактор, перенаправляющий поток жидкости к турбинной части.

Воздействие рабочей жидкости на лопасти турбинного колеса заставляет его вращаться, передавая крутящий момент на выходной вал КПП. Прошедшая через турбинную часть жидкость возвращается на реактор, увеличивая общее давление жидкости на его лопасти. Таким образом, внутри гидротрансформатора до момента уравнения скорости вращения насосной и реакторной частей устанавливается циркуляция масла.

Из-за потерь энергии в жидкости в режиме проскальзывания скорость вращения турбины будет ниже частоты вращения насоса. На практике это приводит к значительной потере КПД. Для увеличения коэффициента полезного действия в конструкцию всех современных автоматических коробок передач внедрена муфта блокировки гидротрансформатора.

Муфта блокировки ГДТ

Муфта блокировки установлена на шлицах входного вала АКПП и предназначена для механического соединения насосной части и ротора.

Составные части муфты блокировки:

  • поршень блокировки, посредством которого идет нажим на зону роторного колеса с фрикционным слоем;
  • задняя крышка кожуха гидротрансформатроа, на которой также имеется фрикционный слой. Крышка сварена с насосной секцией;
  • фрикционная накладка;
  • демпфер крутильных колебаний. Является аналогом двухмассового маховика на авто с механической КПП. Призван гасить неравномерность вращения коленчатого вала, минимизируя негативное воздействие крутильных колебаний на детали коробки передач. Также демпфер смягчает момент включения/выключения муфты блокировки, что делает ее работу для водителя незаметной.

Работа системы невозможна без клапана муфты гидротрансформатора и блока управления АКПП, который считывает показания датчиков и управляет исполнительными механизмами.

Режимы работы гидротрансформатора

  1. Проскальзывание – муфта блокировки разомкнута. Посредством клапана управления рабочая жидкость подается по каналу «В», отжимая тем самым клапан от стенки задней крышки кожуха ГДТ. Масло по каналу «Б» отводится через полость внутри вала. Используется при старте с места и разгоне. Размыканием муфты блокировки гидротрансформатора на высших передачах позволяет автомобилю динамично разгоняться без перехода на низшую ступень.
  2. Режим зацепления – муфта заблокирована. Масло по каналу «А» поступает в полость за муфтой, заставляя поршень прижаться к задней крышке кожуха. Сила трения между фрикционными накладками ведет к зацеплению корпуса ГДТ с турбинным колесом. Муфта замыкается преимущество при движении на высших передачах.На большинстве АКПП блокировка гидротрансформатора включается после 3 передачи. Но из-за ужесточения экологических норм на современных авто муфта может быть заблокирована на любой передаче при частоте работы двигателя свыше 1000 об/мин.
  3. Режим управляемой пробуксовки – муфта работает с небольшим проскальзыванием. В вариантах конструкции, не оборудованных демпфером, режим используется для гашения крутильных колебаний. В таком случае между турбинной секцией и насосной частью допускается небольшое проскальзывание. При этом повышается плавность переключения и КПД.

Управление системой блокировки

Регулирует режимы работы электромагнитный клапан гидротрансформатора, а точнее, мехатроник, который управляет питающим напряжением на клапане. Изменение силы тока на клапане регулирует распределение жидкости между каналами и силу нажима поршня блокировки. В выборе режима блокировки ЭБУ ориентируется на следующие входные параметры:

  • частота вращения коленчатого вала;
  • скорость вращения роторной секции;
  • частота вращения выходного вала АКПП;
  • фактический крутящий момент при заданном положении дроссельной заслонки;
  • температура жидкости ATF;
  • задействованная передача (перечень включенных пакетов фрикционов, определяющий передаточное число на выходном валу).

Видео: Гидротрансформатор. Принцип работы. ОЧЕНЬ ПОНЯТНО!