На сколько турбина увеличивает мощность двигателя?

Как работают турбины

Турбина может существенно увеличить мощность двигателя без значительного роста его веса

Когда говорят о гоночных или спортивных машинах, часто всплывает тема турбонаддува. Турбины неизменно сопровождают современные дизеля. Турбина может существенно увеличить мощность двигателя без значительного роста его веса. Это большое преимущество привело к популярности турбин!

Давайте разберемся, как турбина увеличивает мощность, выживая при этом в экстремальных условиях работы. Мы познакомимся с вестгейтами, керамическими лопастями турбин и подшипниками, которые помогают турбинам делать работу еще лучше. Турбины – системы принудительного нагнетания воздуха. Они сжимают воздух. Сжатый воздух дает преимущество по мощности: в двигатель поступает больше воздуха, а это значит, что больше топлива может быть добавлено. Следовательно, каждое сгорание смеси в цилиндре дает больше мощности. Турбированный двигатель в общем случае всегда мощнее аналогичного по объему атмосферного. Двигатель меньшей массы может выдавать больше мощности при наличии наддува.

Чтобы создать давление воздуха, турбина использует поток выхлопных газов из двигателя для раскручивания своей крыльчатки, которая в свою очередь раскручивает воздушный насос. Турбина вращается с частотой до 150,000 об/мин – это в 30 раз быстрее среднего двигателя. Так как турбина работает с выхлопными газами, ей приходится выдерживать большие термические нагрузки.
Чтобы снять больше мощности с двигателя, необходимо увеличить количество топливно-воздушной смеси, которая сгорает в цилиндрах. Один из способов – добавить количество цилиндров или увеличить их объем. Часто эти изменения очень дороги. Турбина дешевле добавляет мощность, и именно поэтому она так популярна на вторичном рынке.


Расположение турбины в машине

Турбина позволяет сгорать большему количеству топлива, увеличивая количество топлива и воздуха в цилиндрах. Типичная прибавка к давлению от турбины – 0.3 – 0.5 бар. Поскольку атмосферное давление на уровне моря 1 бар, легко подсчитать, что в камеры сгорания попадает на 50 % больше воздуха, следовательно увеличение мощности должно доходить до 50%. В действительности, эффект получается 30- 40 %.

Одна из причин этой неэффективности – сила, раскручивающая турбину, не приходит извне. Наличие турбины увеличивает сопротивление выхлопа. Это означает, что на отводе отработавших газов двигатель вынужден преодолевать возросшее обратное сопротивление, что уменьшает отдачу с цилиндров, в которых в этот момент происходит сгорание.


Турбина и ее внешние компоненты

Турбина крепится на выхлопном коллекторе двигателя. Выхлопные газы двигателя раскручивают турбину. Турбина покоится на одном валу с компрессором, который располагается между воздушным фильтром и впускным коллектором. Компрессор накачивает воздух в цилиндры.


Внутри турбины

Выхлопной газ из цилиндров проходит через лопатки крыльчатки турбины, вызывая ее вращение. Чем больше выхлопных газов проходит, тем быстрее крутится турбина.

С другой стороны вала турбины устанавливают компрессор центробежного типа – он засасывает воздух в центре крыльчатки и разбрасывает его от центра из-за вращающегося вала.

Слишком много давления?
Воздух закачивается в цилиндры под давление и дальше сжимается поршнями. В этом кроится опасность – детонация. Детонация происходит из-за резкого увеличения температуры воздуха, при котором топливная смесь сгорает до воспламенения свечи. Поэтому турбированные машины обычно ездят на высокооктановом топливе, чтобы не доводить дело до детонации. Если давление наддува очень высоко, компрессию двигателя можно снизать, чтобы не переходить в детонацию.

Чтобы работать на скоростях до 150,000 об/мин, вал турбины требует серьезной защиты. Большинство подшипников взрываются при таких скоростях, поэтому турбины часто используют жидкие подшипники. Этот тип подшипников создает вокруг вала постоянный тонкий слой масла, которое постоянно накачивается насосом. Это служит двум целям: охлаждение и снижение трения.
В следующей главе рассмотрим компромиссы, на которые вынуждены идти инженеры при проектировании турбонаддува..

7 главных минусов и 2 плюса турбомоторов

Чем турбомотор отличается от атмосферного?

Атмосферный мотор засасывает воздух в цилиндры под действием разрежения, которое возникает, когда поршень движется к нижней мертвой точке. В большинстве случаев давление в цилиндре в конце хода впуска чуть ниже атмосферного. И вот с этим количеством воздуха и осуществляется рабочий цикл мотора. Наддувный двигатель получает на входе в цилиндр воздух, сжатый компрессором до определенного давления, а потому его в цилиндр войдет больше, чем у мотора со свободным всасыванием. Больше воздуха — больше кислорода, а значит, и топлива сгорит больше, и мощность при том же рабочем объеме поршневой части будет выше (или мотор компактнее при сохранении мощности).

Поскольку воздух в компрессоре подогревается, температуру перед подачей в цилиндр желательно снизить. Это делает специальный охладитель — интеркулер. Компрессоры могут использоваться разных типов — и с приводом от коленвала, и волновые обменники давления, но наиболее распространен турбонаддув. Последний способ использует энергию выхлопных газов для вращения центростремительной турбины, а сидящее на том же вале колесо центробежного компрессора обеспечивает сжатие воздуха перед подачей в цилиндры.

Как видим, конструкция наддувного мотора сложнее, чем атмосферника. Отсюда и первый недостаток турбомоторов.

1. Низкая надежность

Наддувные двигатели состоят из большего числа агрегатов, а надежность многокомпонентной системы всегда ниже, чем у более простой. Нагрузки на детали больше из-за большей литровой мощности. Да и конструкционные материалы в автомобильной промышленности используются преимущественно недорогие. Это же вам не аэрокосмическая отрасль…

К примеру, у турбокомпрессора есть система регулирования давления наддува, которая порой может заедать и отказывать. У редакционного Volkswagen Golf уже дважды при пробеге 80 000 и 100 000 км полностью теряла подвижность тяга привода клапана перепуска газов мимо турбины.

2. Недостаточный ресурс

Все мы вздыхаем по моторам-миллионникам конца прошлого века. Сейчас ресурс мотора в 400 000 км считается огромным достижением, а в прошлом он был нормой. Турбодвигатели современных автомобилей до таких пробегов не доживают. Турбокомпрессоры на бензиновых моторах редко ходят больше 150 000 км, а начавшая «хандрить» турбина вскоре может погубить и поршневую часть. Ведь турбокомпрессор может «выхлебать» весь запас моторного масла — в поддоне и поршневой части ничего не останется.

А еще многие производители с целью сэкономить «апгрейдят» атмосферные моторы до турбонаддувных, не особо заморачиваясь усилением некоторых деталей. Соответственно, высокие нагрузки на поршневую часть при небольшом усилении конструкции приводят к снижению ресурса.

3. Необходимость более частого и высококвалифицированного обслуживания

Многие производители для своих моделей с турбомоторами снизили периодичность ТО с 15 000 до 10 000 км. Так поступили, к примеру, Geely и Haval.

Наддувный мотор сложнее в обслуживании и особенно в диагностике. У него гораздо больше количество дополнительных соединений в системе турбонаддува. Потерять герметичность могут: подвод и отвод воздуха, подвод и отвод отработанных газов, системы подачи масла под давлением и его слива, а также подачи охлаждающей жидкости. Все это требует дополнительного внимания и опыта у сервисмена во время ТО.

4. Дорогой ремонт

Ремонт наддувного мотора всегда обходится дороже. Даже если турбокомпрессор в ремонтной фирме и не трогали, то прайс на восстановление двигателя все равно выше. Просто потому, что разбирать-собирать все перечисленные выше системы дольше и сложнее. А если предстоит замена турбокомпрессора, то готовьтесь выложить от 60 000 руб. Восстановление узла может потребовать половину этой суммы.

5. Обязательно применять хорошее топливо и смазки

Все современные моторы довольно требовательны к качеству топлива и моторного масла. Но если атмосферник на некачественных жидкостях «умрет» не сразу, то жизнь форсированного наддувного мотора будет измеряться минутами. Кроме того, расход даже самого дорогого масла у наддувного мотора будет выше, чем у большинства атмосферников.

Отдельного разговора требует расход топлива. Любой маркетолог, желающий продать вам машину с турбомотором, будет уверять, что она экономичнее, чем автомобиль с атмосферным двигателем. В теории так и есть. Но ведь турбомашина — это «великий провокатор». Некоторые автомобилисты сознательно выбирают турбодвигатель, чтобы ездить напористо и агрессивно. В этом случае расход будет не меньше, а даже больше, примерно на 30%, чем у спокойного водителя. Для неторопливого водителя мощность турбомашины может показаться избыточной, а повышенные затраты на содержание, (частые ТО, дорогие бензин и масло) — неоправданными.

6. Необходимость дополнительного охлаждения

Недаром многие сигнализации имеют опцию «турботаймер». Это устройство позволяет не глушить разогретый турбомотор сразу после остановки машины, а дает двигателю поработать на холостом ходу для охлаждения — прежде всего турбины. Похожий алгоритм у некоторых мощных автомобилей штатно заложен в блок управления двигателем. Без этого в остановившейся, но раскаленной докрасна турбине масло закоксуется, нарушив герметичность уплотнений. В итоге значительно вырастет расход масла на угар.

Читайте также  Какие присадки лучше для бензинового двигателя?

7. Проблемы с ликвидностью

Обо всех вышеперечисленных неприятностях осведомлены, в той или иной степени, многие автолюбители. Именно поэтому большинство предпочтет на вторичном рынке машину с атмосферным двигателем. А заезженные «турбозажигалки» приобретать будут, в основном, молодые поклонники всех серий «Форсажа».

Впрочем, есть у турбомоторов и неоспоримые плюсы.

1. Отличная характеристика крутящего момента

Разгон автомобиля — хоть с механической коробкой передач, хоть с автоматом — очень зависит от того, насколько быстро мотор из режима холостого хода сможет достигнуть оборотов максимальной мощности. А мощность, как известно, пропорциональна произведению оборотов коленвала на крутящий момент. Именно поэтому нужно, чтобы мотор на как можно более низких оборотах выдавал большой крутящий момент.

Наддувный мотор проектируют так, что турбокомпрессор обеспечивает довольно высокое давление наддува очень «рано», при небольших оборотах коленвала. В результате мы получаем большой крутящий момент на небольших оборотах. Далее момент увеличивать нельзя во избежание чрезмерных нагрузок на детали мотора. Начинает работать перепускной клапан, направляя часть выхлопных газов в обход турбины. Так производительность турбокомпрессора ограничивается, а на кривой крутящего момента появляется горизонтальная полка. Вот за такую характеристику турбомоторов их и любят, особенно активные водители.

2. Низкий расход топлива

У атмосферного двигателя значительная часть энергии сгоревших газов теряется вместе с горячими выхлопными газами. Наддувный двигатель использует температуру и давление выпускных газов, срабатывая их в турбине. Меньше энергии пропадает зря, значит, больше используется для движения автомобиля. Но, повторюсь, при условии спокойной манеры вождения.

Турбодвигатели совершенствуются и захватывают все новые модельные ряды автомобилей самых разных производителей на всех континентах. Вначале они оккупировали дороги старушки Европы. Япония давно и массово загружает ими внутренний рынок. США и Корея немного более сдержанны в распространении турбированных двигателей. Зато Китай в последнее время массово пересаживается на турбонаддув. Так что за наддувными двигателями будущее. Если, конечно, их не вытеснят электрокары.

  • Самые надежные двигатели (из тех, что еще продаются) мы собрали тут.

Выбираем современный двигатель: почему турбо лучше, чем обычный?

Турбированные и атмосферные двигатели — в чем разница?

Разница в том, каким образом в цилиндры двигателя поступает воздух.

    • Атмосферный мотор

Воздух идет сам туда, где ниже давление. У атмосферного мотора воздух идет в цилиндры под действием создаваемого на такте впуска разрежения — поршень опускается и втягивает за собой воздух. Проще не бывает.

    • Наддувный мотор

Чтобы нагнать в цилиндры больше воздуха, в помощь разнице давлений приходит принудительный наддув. Грубо говоря, на впуске ставят «большой вентилятор». О конструкции таких систем поговорим вкратце чуть ниже.

Зачем двигателю нужен наддув?

Чтобы повысить мощность двигателя, нужно сжечь в нем больше топлива — зависимость простая. А вот чтобы сжечь больше топлива, нужно подать в цилиндры много воздуха, почти по кубометру на каждый литр бензина. Вопрос лишь в том, как заставить его это сделать? Основных способов два:

    • Увеличить объем. Это напрашивается само собой, и долгое время конструкторы шли этим путем: увеличивали количество цилиндров, их объем и конфигурацию. Так появились авиационные W12 и V16 с рабочим объемом в сотню литров с гаком и американские семилитровые V8 для автомобилей.… Сейчас мы не будем вдаваться в подробности и лишь констатируем, что путь этот сложный. В определенный момент большой мотор становится слишком тяжелым, а дальнейшее увеличение — нецелесообразным.
    • Увеличить количество сжигаемого топлива, не наращивая объем двигателя. Действительно, почему бы с силой не загнать в цилиндры просто побольше воздуха, чтобы можно было сжечь много бензина? Тут-то на помощь приходит наддув.

Двигатель W12 разработки Volkswagen Group ставился в разные годы на Audi A8L, Volkswagen Phaeton, Volkswagen Touareg, Bentley Continental Flying Spur и другие премиум-модели. Фото: w12cars.com

Какие есть основные типы наддувов?

  • Турбокомпрессор, который использует энергию выхлопных газов. Он представляет собой сдвоенный корпус из двух металлических «улиток», в котором на одном валу крутятся две крыльчатки. Одну из них раскручивает поток выхлопных газов, вырывающийся из выпускного коллектора. Вторая крутится, так как находится на одном валу с первой, — она «загоняет» атмосферный воздух во впускной коллектор.

Мы не будем сейчас вдаваться в достоинства и недостатки каждой из схем, а также описывать историю их создания и развития — это тема для отдельного материала. Здесь нам важно определиться, насколько наддувные моторы хороши.

Какие преимущества есть у наддувного мотора?

На графике замера мощности и крутящего момента Skoda Fabia RS TSI видно, что в диапазоне с 2 000 до 4 500 оборотов двигатель развивает 250 ньютон-метров. Это и называется «полкой крутящего момента».

Почему люди боятся наддувных моторов?

Почему некоторые производители спорткаров до сих пор не признают наддува?

Турбомотор — брать или не брать?

Читайте также:

Для комментирования вам необходимо авторизоваться

Турбина на 100 тысяч? Что за бред? У ВСЕХ моих знакомых больше 20 тысяч турбина не живет! А замена ее стоит чуть ли не половина прайса заменты двигла

А можно пару примеров, если не трудно? По моделям. У меня на Саабе 170 тысяч уже. Масло гонит, конечно, но в пределах литра на 1000.

Андрей, заходите к любому дилеру Peugeot, Citroen, VW, Skoda, Seat и даже BMW, подходите к мастерам-приёмщикам и говорите одно слово: «турбина». Обычно после этого они прячутся под стол, а менеджер отдела запчастей вместе с гарантийщиком выпрыгивают в окно. )))))

Я уже, кажется, вижу заголовок следующей статьи «Выбираем современный двигатель: почему обычный лучше турбо». И автор — Илья Огородников :))

Что такое турбонаддув

Такая вот небольшая с виду «улитка» — один из самых действенных способов увеличить мощность двигателя.

Несомненно, каждый из нас хоть раз в жизни замечал на обычном с виду автомобиле шильдик «turbo». Производители, как нарочно, делают эти шильдики небольшого размера и размещают в неприметных местах так, что непосвящённый прохожий не заметит и пройдёт мимо. А понимающий человек непременно остановится и заинтересуется автомобилем. Ниже приводится рассказ о причинах такого поведения.

Автомобильные конструкторы (с момента появления на свете этой профессии) постоянно озабочены проблемой повышения мощности моторов. Законы физики гласят, что мощность двигателя напрямую зависит от количества сжигаемого топлива за один рабочий цикл. Чем больше топлива мы сжигаем, тем больше мощность. И, скажем, захотелось нам увеличить «поголовье лошадей» под капотом — как это сделать? нас и поджидают проблемы.

Дело в том, что для горения топлива необходим кислород. Так что в цилиндрах сгорает не топливо, а топливно-воздушная смесь. Мешать топливо с воздухом нужно не на глазок, а в определённом соотношении. К примеру, для бензиновых двигателей на одну часть топлива полагается частей воздуха — в зависимости от режима работы, состава горючего и прочих факторов.

Как мы видим, воздуха требуется весьма много. Если мы увеличим подачу топлива (это не проблема), нам также придётся значительно увеличить и подачу воздуха. Обычные двигатели засасывают его самостоятельно разницы давлений в цилиндре и в атмосфере. Зависимость получается прямая — чем больше объём цилиндра, тем больше кислорода в него попадёт на каждом цикле. Так и поступали американцы, выпуская огромные двигатели с умопомрачительным расходом горючего. А есть ли способ загнать в тот же объём больше воздуха?

Есть, и впервые придумал его господин Готтлиб Вильгельм Даймлер (Gottlieb Wilhelm Daimler). Знакомая фамилия? Ещё бы, именно она используется в названии DaimlerChrysler. Так вот, этот немец весьма неплохо соображал в моторах и ещё в 1885 году придумал, как загнать в них больше воздуха. Он догадался закачивать воздух в цилиндры с помощью нагнетателя, представлявшего собой вентилятор (компрессор), который получал вращение непосредственно от вала двигателя и загонял в цилиндры сжатый воздух.

Читайте также  Как определить КПД теплового двигателя?

Швейцарский инженер-изобретатель Альфред Бюхи (Alfred J. Büchi) пошёл ещё дальше. Он заведовал разработкой дизельных двигателей в компании Sulzer Brothers, и ему категорически не нравилось, что моторы были большими и тяжёлыми, а мощности развивали мало. Отнимать энергию у «движка», чтобы вращать приводной компрессор, ему также не хотелось. Поэтому в 1905 году господин Бюхи запатентовал первое в мире устройство нагнетания, которое использовало в качестве движителя энергию выхлопных газов. Проще говоря, он придумал турбонаддув.

Идея умного швейцарца проста, как всё гениальное. Как ветра вращают крылья мельницы, также и отработавшие газы крутят колесо с лопатками. Разница только в том, что колесо это очень маленькое, а лопаток очень много. Колесо с лопатками называется ротором турбины и посажено на один вал с колесом компрессора. Так что условно турбонагнетатель можно разделить на две части — ротор и компрессор. Ротор получает вращение от выхлопных газов, а соединённый с ним компрессор, работая в качестве «вентилятора», нагнетает дополнительный воздух в цилиндры. Вся эта мудрёная конструкция и называется турбокомпрессор (от латинских слов turbo — вихрь и compressio — сжатие) или турбонагнетатель.

В турбомоторе воздух, который попадает в цилиндры, часто приходится дополнительно охлаждать — тогда его давление можно будет сделать выше, загнав в цилиндр больше кислорода. Ведь сжать холодный воздух (уже в цилиндре ДВС) легче, чем горячий.

Воздух, проходящий через турбину, нагревается от сжатия, а также от деталей турбонаддува, разогретого выхлопными газами. Подаваемый в двигатель воздух охлаждают при помощи так называемого интеркулера (промежуточный охладитель). Это радиатор, установленный на пути воздуха от компрессора к цилиндрам мотора. Проходя через него, он отдаёт своё тепло атмосфере. А холодный воздух более плотный — значит, его можно загнать в цилиндр ещё больше.

Чем больше выхлопных газов попадает в турбину, тем быстрее она вращается и тем больше дополнительного воздуха поступает в цилиндры, тем выше мощность. Эффективность этого решения по сравнению, например, с приводным нагнетателем в том, что на «самообслуживание» наддува тратится совсем немного энергии двигателя — всего 1,5%. Дело в том, что ротор турбины получает энергию от выхлопных газов не за счёт их замедления, а за счёт их охлаждения — после турбины выхлопные газы идут быстро, но более холодные. Кроме того, затрачиваемая на сжатие воздуха даровая энергия повышает КПД двигателя. Да и возможность снять с меньшего рабочего объёма большую мощность означает меньшие потери на трение, меньший вес двигателя (и машины в целом). Всё это делает автомобили с турбонаддувом более экономичными в сравнении с их атмосферными собратьями равной мощности. Казалось бы, вот оно, счастье. Ан нет, не всё так просто. Проблемы только начались.

, скорость вращения турбины может достигать 200 тысяч оборотов в минуту, , температура раскалённых газов достигает, только попробуйте представить, 1000°C! Что всё это означает? То, что сделать турбонаддув, который сможет выдержать такие неслабые нагрузки длительное время, весьма дорого и непросто.

По этим причинам турбонаддув получил широкое распространение только во время Второй мировой войны, да и то только в авиации. В годах американская компания Caterpillar сумела приспособить его к своим тракторам, а умельцы из Cummins сконструировали первые турбодизели для своих грузовиков. На серийных легковых машинах турбомоторы появились и того позже. Случилось это в 1962 году, когда почти одновременно увидели свет Oldsmobile Jetfire и Chevrolet Corvair Monza.

Но сложность и дороговизна конструкции — не единственные недостатки. Дело в том, что эффективность работы турбины сильно зависит от оборотов двигателя. На малых оборотах выхлопных газов немного, ротор раскрутился слабо, и компрессор почти не задувает в цилиндры дополнительный воздух. Поэтому бывает, что до трёх тысяч оборотов в минуту мотор совсем не тянет, и только потом, тысяч после четырёх-пяти, «выстреливает». Эта ложка дёгтя называется турбоямой. Причём чем больше турбина, тем она дольше будет раскручиваться. Поэтому моторы с очень высокой удельной мощностью и турбинами высокого давления, как правило, страдают турбоямой в первую очередь. А вот у турбин, создающих низкое давление, никаких провалов тяги почти нет, но и мощность они поднимают не очень сильно.

Почти избавиться от турбоямы помогает схема с последовательным наддувом, когда на малых оборотах двигателя работает небольшой малоинерционный турбокомпрессор, увеличивая тягу на «низах», а второй, побольше, включается на высоких оборотах с ростом давления на выпуске. В прошлом веке последовательный наддув использовался на суперкаре Porsche 959, а сегодня по такой схеме устроены, например, турбодизели фирм BMW и Land Rover. В бензиновых двигателях Volkswagen роль маленького «заводилы» играет приводной нагнетатель.

На рядных двигателях зачастую используется одиночный турбокомпрессор (пара «улиток») с двойным рабочим аппаратом. Каждая из «улиток» наполняется выхлопными газами от разных групп цилиндров. Но при этом обе подают газы на одну турбину, эффективно раскручивая её и на малых, и на больших оборотах

Но чаще по-прежнему встречается пара одинаковых турбокомпрессоров, параллельно обслуживающих отдельные группы цилиндров. Типичная схема для турбомоторов, где у каждого блока свой нагнетатель. Хотя двигатель V8 фирмы M GmbH, дебютировавший на автомобилях BMW X5 M и X6 M, оснащён перекрёстным выпускным коллектором, который позволяет компрессору получать выхлопные газы из цилиндров разных блоков, работающих в противофазе.

Заставить турбокомпрессор работать эффективнее во всём диапазоне оборотов, можно ещё изменяя геометрию рабочей части. В зависимости от оборотов внутри «улитки» поворачиваются специальные лопатки и варьируется форма сопла. В результате получается «супертурбина», хорошо работающая во всём диапазоне оборотов. Идеи эти витали в воздухе не один десяток лет, но реализовать их удалось относительно недавно. Причём сначала турбины с изменяемой геометрией появились на дизельных двигателях, благо, температура газов там значительно меньше. А из бензиновых автомобилей первый примерил такую турбину Porsche 911 Turbo.

Конструкцию турбомоторов довели до ума уже давно, а в последнее время их популярность резко возросла. Причём турбокомпрессоры оказалось перспективным не только в смысле форсирования моторов, но и с точки зрения повышения экономичности и чистоты выхлопа. Особенно актуально это для дизельных двигателей. Редкий дизель сегодня не несёт приставки «турбо». Ну а установка турбины на бензиновые моторы позволяет превратить обычный с виду автомобиль в настоящую «зажигалку». Ту самую, с маленьким, едва заметным шильдиком «turbo».

На сколько турбина увеличивает мощность двигателя?

Механический и газотурбинный наддув по-разному влияют на мощность и к. п. д. двигателя. Однако интерес представляет также влияние наддува на к. п. д. по сравнению с двигателем без наддува.

Так как среднее давление трения возрастает заметно медлен­нее, чем среднее эффективное давление, то механический к. п. д. при повышении среднего эффективного давления за счет наддува увеличивается. Поэтому, как правило, различие в удельном рас­ходе топлива между двигателями без наддува и двигателями с механическим наддувом невелико, если речь идет о сравнительно высоких значениях среднего эффективного давления. Только при низких р е (и высоких частотах вращения) потери мощности на привод механического нагнетателя вызывают увеличение удель­ного расхода топлива по сравнению с двигателем без наддува.

Поскольку у двигателя с турбонаддувом отпадает необхо­димость затраты мощности на привод компрессора, то его удель­ный расход топлива ниже, чем у двигателя без наддува. Если сравнивать двигатели равной максимальной мощности (меньшее число цилиндров у двигателя с наддувом), то лучшая топливная экономичность имеет место у двигателя с наддувом во всем диа­пазоне нагрузок (рис. 7.7 и 7.8).

Благоприятное влияние турбонаддува на к. п. д. дизелей объясняется в основном следующим.

1. С возрастанием среднего эффективного давления улуч­шается механический к. п. д.

2. Применение наддува позволяет обеспечивать высокий коэф­фициент избытка воздуха для сгорания при одновременно высо­ком среднем эффективном давлении. С увеличением избытка воздуха для сгорания улучшается индикаторный к. п. д..

3. Применение охлаждения наддувочного воздуха уменьшает потери теплоты и обусловливает тем самым снижение удельного расхода топлива.

4. У четырехтактных двигателей добавляется еще выигрыш мощности за счет или положительной, или меньшей, чем у дви­гателей без наддува, отрицательной петли газообмена (р 3 2 ); этот выигрыш мощности при заданном давлении наддува будет тем больше, чем выше к. п. д. турбокомпрессора и чем выше тем­пература выпускных газов. Правда, при этом увеличение из­бытка воздуха для сгорания, указанное в пункте 2, будет несколько препятствовать повышению температуры выпускных газов.

Читайте также  Как влияет газ на бензиновый двигатель?

При оптимальном использовании названных возможностей на четырехтактных дизелях можно достичь эффективных к. п. д., равных 45%, что соответствует удельному расходу топлива 190 г/(кВт•ч) [140 г/(л. с • ч)] [7.7; 7.8]. Разумеется, для получе­ния хорошего удельного расхода топлива необходимо выбрать высокую степень повышения давления p z /p c .

На рис. 7.9 [7.8] показано изменение важнейших эксплуата­ционных параметров в зависимости от среднего эффективного давления; на рис. 7.10 представлено изменение различных к. п. д. Опытный двигатель фирмы MAN типа K6V30/45 имел 6 цилин­дров при рядной компоновке (диаметр цилиндра 300 мм, ход поршня 450 мм) и работал при частоте вращения 400 об/мин (средняя скорость поршня с m = 6 м/с).

При газовой связи турбокомпрессора с двигателем степень расширения газов в турбине определяется давлением наддува, температурой выпускных газов на входе в турбину и к. п. д. тур­бокомпрессора. Так как эта степень расширения мала по сравне­нию с имеющейся в двигателе, то выпускные газы за турбиной имеют все еще относительно высокую температуру. При увели­чении степени расширения можно (за счет увеличения работы выталкивания) получить большую энергию от выпускных газов, вследствие чего мощность, развиваемая турбиной, становится больше, чем мощность, потребляемая компрессором; избыток мощности может быть использован для повышения эффективной мощности двигателя. Чтобы сохранить приспособляемость сво­бодного турбокомпрессора к переменным условиям эксплуатации, целесообразно у четырехтактных двигателей воспринимать избы­точную мощность от энергии выпускных газов в особой ступени турбины, отдающей свою мощность через передачу коленчатому валу двигателя. Схема такого комбинированного способа, вклю­чающая силовую турбину 1 и расширительную турбину 2 на одном валу с компрессором, показана на рис. 7.11.

На подобной установке, у которой, правда, силовая турбина не имела кинематической связи с двигателем, а тормозилась компрессором (воздух из которого через регулируемый дроссель выпускался в атмосферу, т. е. не использовался), фирмой MAN проводились испытания с опытным двигателем KV30/45 [7.9]. Рассчитанная из торможения мощность силовой турбины добавлялась с учетом достижимого к. п. д. передачи к эффектив­ной мощности двигателя. Таким образом, исходя из величины к. п. д. двигателя со свободным турбокомпрессором, улучшенной до 45,6% [g e — 136,5 г/(л. с. ч), Н u = 10 150 ккал/кг], был рассчи­тан оптимальный к. п. д. —46,5%, т. е. достигнутое повышение к. п. д. составило около 2% (рис. 7.12).

Практической реализации таких к. п. д., которые до настоя­щего времени, насколько известно, не были достигнуты хотя бы экспериментально, мешает необходимость слишком больших за­трат. В связи с необходимостью обеспечения большого избытка воздуха для сгорания ? не используется высокое давление над­дува, так как при высоком максимальном давлении сгорания р z требуется утяжеление двигателя и ограничение мощности. Если на среднеоборотных четырехтактных дизелях достигаются сред­ние эффективные давления около 20 бар при максимальных дав­лениях сгорания 120 бар, т. е. при отношении р zе ? 6, то это отношение у названного выше опытного двигателя составляло 120/15 = 8; 15 бар вместо 20 бар среднего эффективного давле­ния означают потери мощности, равные 25%. К этому добав­ляется еще и то, что для обеспечения оптимального к. п. д. сред­няя скорость поршня не должна быть слишком высокой в связи с механическими потерями на трение. Упомянутый опытный дви­гатель имел среднюю скорость поршня лишь 6 м/с, что также предопределяет на 25% меньшую мощность по сравнению с сов­ременной аналогичной установкой, так как в настоящее время значения средней скорости поршня 8 м/с и выше являются обыч­ными для среднеоборотных двигателей.

По указанным выше причинам на существующих дизелях еще не достигнуты значения к. п. д., равные 45%, однако возмож­ности дальнейшего повышения этого параметра были исследованы на базе специальных расчетов [7.9].

В основу расчетов была положена рV -диаграмма опытного двигателя при тех же параметрах наддувочного воздуха и при равном количестве подводимого топлива. В связи с этим можно было ограничиться расчетом процесса газообмена и балансов мощностей лопаточных машин. Так как дополнитель­ная силовая турбина вследствие более высокого подпора выпускных газов за двигателем обусловливает увеличение количества остаточных газов в цилиндре и вместе с тем снижение мощности, то расчеты были проведены для схем, показанных на рис. 7.13 и 7.14 и устраняющих отрицательное влияние увеличения коли­чества остаточных газов в цилиндре.

На схеме (рис. 7.13) показан комбинированный двигатель с силовой турбиной и двумя выпускными клапанами, управляе­мыми независимо друг от друга. Если управление клапанов осу­ществляется в соответствии с диаграммой газораспределения, изображенной на рис. 7.15, то клапан б действует как продувоч­ный. Основная часть газов поступает через клапан в под высо­ким давлением сначала в силовую турбину 1 и затем в турбину 2, связанную с компрессором. Через клапан б в конце хода выпуска вытекают остаточные газы (т. е. лишь малая часть заряда), вы­талкиваемые к турбине 2 за счет перепада давления при про­дувке.

Как показали расчеты, при этой схеме может быть достигнуто повышение к. п. д. на 4,7%. Если исходить из к. п. д., равного 45% у опытного двигателя, то это означает, что для схемы с си­ловой турбиной и продувочным клапаном можно достигнуть к. п. д., несколько превышающий 47% (произведение 45 на 1,047).

Если клапаны установки (см. рис. 7.13) управлялись бы в со­ответствии с диаграммой газораспределения, показанной на рис. 7.16 (кривые 2), то через клапан в протекала бы к турбине 1 только малая часть выпускных газов под высоким давлением (разделение предварительного выпуска), а основная часть газов вытекала бы через клапан б под более низким давлением в тур­бину 2.

Необходимо учитывать, что при этом способе результат в зна­чительной степени зависит от выбранного время- или угла-се­чения клапанов. Двигатель имеет два впускных и два выпускных клапана, которые при обычном способе наддува по очереди совместно открываются и закрываются. Так как из-за ограничен­ности места в крышке цилиндра может быть размещен только один маленький дополнительный клапан, то при расчете предпо­лагалось, что этот добавочный клапан работает как клапан пред­варения выпуска в, а оба больших выпускных клапана — как клапаны, через которые осуществляется выталкивание. В связи с этим получается время-сечение, соответствующее кривым 2 па рис. 7.16, которое, несмотря на большую суммарную площадь проходного сечения клапанов, намного меньше, чем время — се­чение клапанов при обычной схеме наддува, соответствующее кривой 1 , так как вследствие измененных фаз газораспределения и малой продолжительности открытия клапанов большая часть время-сечения теряется. Расчетное значение улучшения к. п. д. составляло при этом 3,7%. Другие схемы подключения клапанов с другими фазами газораспределения были еще менее удачными.

Если согласно рис. 7.14 для предварения выпуска преду­смотреть специальные окна в цилиндровой втулке, а оба вы­пускных клапана (а и б), предназначенные для выпуска основной массы газов, оставить в крышке цилиндра, то изменение про­ходных сечений клапанов будет соответствовать кривым 3 на рис. 7.16 и при этом будет достигаться значительно большее время-сечение, чем по кривым 2. В этом случае рассчитанное улучшение к. п. д. составляло 6,7%, что при исходном значе­нии 45% давало общий к. п. д. около 48%.

Эти расчеты показывают, что хотя и не невозможно, но сложно и дорого еще больше повысить уже сам по себе высокий к. п. д. дизеля. Говоря об абсолютной величине этого показателя, сле­дует также отметить, что к. п. д. дизеля при прочих равных усло­виях хотя и не намного, но все же увеличивается с ростом диа­метра цилиндра, и что V -образные двигатели вследствие лучшего соотношения числа цилиндров и числа коренных подшипников имеют несколько меньшие потери на трение. Значения к. п. д. ? 43% уже достигнуты на среднеоборотных двигателях больших базовых размеров цилиндров при обычных средних скоростях поршней и средних эффективных давлениях. Такого же порядка наиболее высокие значения к. п. д. и у мало­оборотных двухтактных двигателей с наддувом.