Система прямого впрыска топлива

Непосредственный впрыск топлива бензиновых ДВС.

Система непосредственного впрыска топлива является самой современной и совершенной, с точки зрения экономия топлива и экологии, системой впрыска топлива бензиновых двигателей. Работа системы основана на впрыске топлива непосредственно в камеру сгорания двигателя.

Впервые система непосредственного впрыска была применена на двигателе GDI (Gasoline Direct Injection – непосредственный впрыск бензина), устанавливаемом на автомобили компании Mitsubishi. В настоящее время система непосредственного впрыска используется в двигателях многих автопроизводителей.

Toyota — D4
Mercedes-benz — CGI
Mitsubishi — GDI
Nissan — NEO DI
Renault — IDE
Alfa Romeo — JTS
PSA Peugeot Citroën — HPi
Mazda — DISI; SkyActive
General Motors — Ecotec
Ford — TwinForce, SCTi, EcoBoost
Volkswagen, Audi, Skoda — FSI, TSI, TFSI
Opel — SIDI (Spark Ignition Direct Injection)

Применение системы непосредственного впрыска позволяет достичь до 5-15% экономии топлива в режиме холостого хода и частичных нагрузок, а также сокращения выброса вредных веществ с отработавшими газами.

Устройство системы непосредственного впрыска топлива.

Конструкция системы непосредственного впрыска топлива рассмотрена на примере системы, устанавливаемой на двигатели FSI Fuel Stratified Injection – послойный впрыск топлива. Система непосредственного впрыска составляет контур высокого давления топливной системы двигателя и включает топливный насос высокого давления, регулятор давления топлива, топливную рампу, предохранительный клапан, датчик высокого давления и форсунки впрыска.

1. топливный бак
2. топливный насос
3. топливный фильтр
4. перепускной клапан
5. регулятор давления топлива
6. топливный насос высокого давления
7. трубопровод высокого давления
8. распределительный трубопровод
9. датчик высокого давления
10. предохранительный клапан
11. форсунки впрыска
12. адсорбер
13. электромагнитный запорный клапан продувки адсорбера

Топливный насос высокого давления служит для подачи топлива к топливной рампе и далее к форсункам впрыска под высоким давлениям (3-11 МПа) в соответствии с потребностями двигателя. Основу конструкции насоса составляет один или несколько плунжеров. Насос приводится в действие от распределительного вала впускных клапанов.

Регулятор давления топлива обеспечивает дозированную подачу топлива насосом в соответствии с впрыском форсунки. Регулятор расположен в топливном насосе высокого давления. Топливная рампа служит для распределения топлива по форсункам впрыска и предотвращения пульсации топлива в контуре. Предохранительный клапан защищает элементы системы впрыска от предельных давлений, возникающих при температурном расширении топлива. Клапан устанавливается на топливной рампе.

Датчик высокого давления предназначен для измерения давления в топливной рампе. В соответствии с сигналами датчика блок управления двигателем может изменять давление в топливной рампе. Форсунка впрыска обеспечивает распыление топлива в камере сгорания для образования топливно-воздушной смеси.

Согласованную работу системы обеспечивает электронная система управления двигателем, которая является дальнейшим развитием объединенной системы впрыска и зажигания. Традиционно система управления двигателем объединяет входные датчики, блок управления и исполнительные механизмы.

Помимо датчика высокого давления топлива в интересах системы непосредственного впрыска работают датчик частоты вращения коленчатого вала, датчик положения распределительного вала, датчик положения педали акселератора, расходомер воздуха, датчик температуры охлаждающей жидкости, датчик температуры воздуха на впуске.

В совокупности датчики обеспечивают необходимой информацией блок управления двигателем, на основании которой блок воздействует на исполнительные механизмы — электромагнитные клапаны форсунок, предохранительный и перепускной клапаны.

Принцип действия системы непосредственного впрыска
Система непосредственного впрыска в результате работы обеспечивает несколько видов смесеобразования:

Послойное
Стехиометрическое гомогенное
Гомогенное

Многообразие в смесеобразовании определяет высокую эффективность использования топлива (экономия, качество образования смеси, ее полное сгорание, увеличение мощности, уменьшение вредных выбросов, мгновенный отклик на педаль акселератора) на всех режимах работы двигателя.

Послойное смесеобразование используется при работе двигателя на малых и средних оборотах и нагрузках. Стехиометрическое (другое наименование – легковоспламеняемое) гомогенное (другое наименование – однородное) смесеобразование применяется при высоких оборотах двигателя — режим макисмальной мощности или больших нагрузках — режим максимального момента. На бедной гомогенной смеси двигатель работает в промежуточных режимах и на холостом ходу, когда нужно обеспичить максимальную экономию топлива. При послойном смесеобразовании дроссельная заслонка почти полностью открыта, впускные заслонки закрыты. Воздух поступает в камеры сгорания с большой скоростью, с образованием воздушного вихря. Впрыск топлива производится в зону свечи зажигания в конце такта сжатия, для этого поршень имеет специальную форму днища. За непродолжительное время до воспламенения в районе свечи зажигания образуется топливно-воздушная смесь с коэффициентом избытка воздуха от 1,5 до 3. При воспламенении смеси вокруг нее остается достаточно много чистого воздуха, выступающего в роли теплоизолятора.

Гомогенное стехиометрическое смесеобразование происходит при открытых впускных заслонках, дроссельная заслонка при этом открывается в соответствии с положением педали газа. Впрыск топлива производится на такте впуска, что способствует образованию однородной смеси. Коэффициент избытка воздуха составляет 1. Смесь воспламеняется и эффективно сгорает во всем объеме камеры сгорания. Бедная гомогенная смесь образуется при максимально открытой дроссельной заслонке и закрытыми впускными заслонками. При этом создается интенсивное движение воздуха в цилиндрах. Впрыск топлива производится на такте впуска. Коэффициент избытка воздуха поддерживается системой управления двигателем на уровне 1,5. При необходимости в состав смеси добавляются отработавшие газы из выпускной системы, содержание которых может доходить до 25%, что снижает количество кислорода в камере сгорания.

На практике непосредственный впрыск приносит много головной боли своим владельцам, вся экономия топлива рассыпается в труху о стоимость ремонта и обслуживания.

1. Необходимо следить за чистотой бензина от механических примесей. Что попало (самый дешевый) в эти двигатели не пойдет. Только самый дорогой из доступных, причем АИ-98-100.

2. Приходится часто менять топливные фильтры (обычно 30-60т.км.), причем только оригинальные. Использование неоригингальных топливных фильтров чревато быстрым износом ТНВД и забитыми форсунками, со всеми прелестями их замены или ремонта. Можно конечно рисковать, но в случае чего — выйдет раком очень дорого.

3. При температурах ниже -25-30С ТНВД из-за ухода тепловых зазоров не может развить номинальное давление, с прогревом он конечно довольно быстро приходит в норму. Но с увеличением пробега все становится хуже. Двигатель трясется, пытается — и не заводится нормально. Кроме того, запуск при таких температурах быстро изнашивает ТНВД и форсунки.

4. Каждые 30-60т.км. необходимо обслуживать всю топливную систему — промывать форсунки, менять уплотнительные колечки, проверять все насосы и при необходимости менять (насос низкого давления) либо ремонтировать (насос высокого давления). Иначе можно «встать» колом.

5. Нужно подбирать масло так, чтобы оно не сильно загаживало камеру сгорания и впускные клапана (а значит зола не больше 1,15%, а в некоторых случаях и все 0,8-1% что явно не способствует стойкости масла и сроку жизни ДВС до износа), но так чтобы предотвратить износ распредвалов, цепей, шестерен и прочего. Подобрать такое масло — не так то просто, даже сами автопроизводители в своих допусках уже запутались…и даже придумали новую страшилку — проблема LSPI. Несите ваши денежки за новые масла…только это вам не поможет. Выбирайте — повышенный износ всего двигателя, но чистые от нагара клапана и каналы, либо — низкий износ и все заросшее нагаром, с опасностью клина. Хороший выбор, не правда ли? Что в лоб, что по лбу…особенно печально в свете того, что многие двигатели с непосредственным впрыском имеют пластинчатую цепь Морзе, либо кулачки распредвалов непосредственно скользят по толкателям клапанов без роликовых механизмов, имеющую крайне высокие требования к противозадирным и противоизносным компонентам ZDDP и ZP, содержание которых приходится постоянно снижать, с все ужесточающимися экологическими нормами. Сюда нужны исключительно полнозольники…иначе износ к 150т.км. будет критическим. Раз в пару-тройку лет — обязательная чистка.

6. Самое веселое — каждые 50-100т.км. необходимо очищать одним из способов (чаще всего — механически, с разборкой) впускные клапана и впускные окна головки блока, из-за того что они не омываются бензином — зарастают нагарами, отложениями, сажей. «Спасибо» системам EGR и принудительной вентиляции картера. Все это дерьмо прилетает именно оттуда и налипает повсюду. В противном случае двигатель сначала теряет мощность (обычно чуть больше 100т.км.), в некоторых случаях смесь обогащается (воздуха мало) и двигатель начинает под нагрузкой коптить, в особо тяжелых случаях (когда владелец — у меня 150-180тыщ ниче не делал по движку — машина огонь!) возможно повреждение клапанов (клинит и гнет…) либо даже отрыв тарелок, с крайне тяжелыми последствиями…а эти двигатели нихрена не простые в сборке-разборке. И еще более тяжелые в капремонте. Если делать самостоятельно — довольно сложно и трудоемко, если ехать в автосервис — неприлично дорого и велик риск что ничего путем не очистят, а протрут тряпочкой впускные каналы и ОК — ждем на капиталочку, лох подготовлен, счетчик запущен…

7. Очень распространенная проблема двигателей с непосредственным впрыском — низкое тепловыделение на холостых и медленном движении по пробкам, в режиме бедной смеси. Экономия она конечно хорошо, но когда за окном -25-35С двигатель натурально остывает, из печки начинает идти холодный воздух. Все двигатели объемом менее 2л с непосредственным впрыском в той или иной степени подвержены этой проблеме. Постепенно решают извращениями с контурами охлаждения (подогрев антифриза от выхлопа, 2 термостата один в головку, второй в блок), интеграция выхлопного коллектора в головку блока…и…даже подачей обогащенной смеси, если температура ДВС начинает снижаться, превращая весь смысл непосредственного впрыска в ничто.

Читайте также  Как правильно перекрасить машину?

8. При езде на высоких скоростях, под нагрузкой, по трассе, когда нужен большой момент и мощность, для сопротивления нагрузке и воздушному потоку — экономия топлива от непосредственного впрыска едва ли укладывается в диапазон 1-5%. В таком режиме двигатель готовит исключительно стехиометрическую смесь, а то и богатит, когда нужна максимальная мощность. В таких режимах езды выгоды от непосредственного впрыска нет и быть не может.

9. Почти полная неликвидность авто с такими двигателями с реальным пробегом свыше 100-150т.км., даже если авто обслуживалось во время и проблем не доставляло. Сильное падение цены на вторичке. Владельцам приходится сматывать пробег в разы, чтобы вообще куда-то продать…и по этой причине невозможно понять, сколько же реально ходят эти двигатели?

К сожалению, непосредственный впрыск топлива бензиновых ДВС можно отнести еще к одной системе снижения ресурса до вмешательства, и вновь срок службы до первого ремонта не превышает 100-150т.км. городского пробега. Если хотите реально экономить топливо — покупайте дизель. Там тоже прелестей хватает («зимнее» летнее диз.топливо, свечи накала, топливные фильтры, прокладки форсунок, ТНВД, сажевые фильтры…), но рассчитаны они обычно для комтранса, имеют огромный запас прочности (сравните поршни, толщину колец, шатунов, коленвала, конструкцию головы, блока) и раньше 250-350т.км. вы туда вряд ли вообще полезите.

Как работает система непосредственного впрыска топлива GDI

Система непосредственного впрыска топлива применяется на бензиновых двигателях последних поколений с целью повышения их экономичности и увеличения мощности. Она предполагает впрыск бензина напрямую в камеры сгорания цилиндров, где и происходит его смешение с воздухом и образование топливовоздушной смеси. Первыми двигателями, которые были оснащены такой системой впрыска, стали моторы GDI (Mitsubishi). Аббревиатура GDI – расшифровывается как “Gasoline Direct Injection”, что дословно переводится как “непосредственный впрыск бензина”.

  1. Устройство и принцип действия системы GDI
  2. Конструктивные особенности двигателей GDI
  3. Режимы работы системы прямого впрыска
  4. Особенности эксплуатации системы
  5. Плюсы и минусы использования

Устройство и принцип действия системы GDI

В наши дни системы, аналогичные Gasoline Direct Injection, используют и другие производители автомобилей, обозначая данную технологию TFSI (Audi), FSI или TSI (Volkswagen), JIS (Toyota), CGI (Mercedes), HPI (BMW). Принципиальными отличиями этих систем являются рабочее давление, конструкция и расположение топливных форсунок.

Конструктивные особенности двигателей GDI

Классическая система непосредственного впрыска топлива конструктивно состоит из следующих элементов:

  • Топливный насос высокого давления (ТНВД). Для корректной работы системы (создания тонкого распыливания) бензин в камеру сгорания должен подаваться под высоким давлением (аналогично дизельным моторам) в пределах 5…12 МПа.
  • Электрический топливный насос низкого давления. Подает топливо из бензобака к ТНВД под давлением 0,3…0,5 МПа.
  • Датчик низкого давления. Фиксирует уровень давления, созданного электрическим насосом.
  • Форсунки высокого давления. Осуществляют впрыск топлива в цилиндр. Оснащены вихревыми распылителями, позволяющими создавать требуемую форму топливного факела.
  • Поршень. Имеет особую форму с выемкой, которая предназначена для перенаправления горючей смеси к свече зажигания двигателя.
  • Впускные каналы. Имеют вертикальную конструкцию, благодаря чему возникает обратный вихрь (закручен в противоположную сторону по сравнению с другими типами двигателей), выполняющий функцию направления смеси к свече зажигания и обеспечивающий лучшее наполнение камеры сгорания воздухом.
  • Датчик высокого давления. Располагается в топливной рампе и предназначен для передачи информации в электронный блок управления, который изменяет уровень давления в зависимости от актуальных режимов работы двигателя.

Режимы работы системы прямого впрыска

Как правило, двигатели с непосредственным впрыском имеют три основных режима работы:

  • Впрыск в цилиндр на такте сжатия (послойное смесеобразование). Принцип работы в этом режиме заключается в образовании сверхбедной смеси, что позволяет максимально экономить топливо. В начале в камеру цилиндра подается воздух, который закручивается и сжимается. Далее под высоким давлением осуществляется впрыскивание топлива и перенаправление полученной смеси к свече зажигания. Факел получается компактным, поскольку формируется на этапе максимального сжатия. При этом топливо как бы окутано прослойкой воздуха, что уменьшает тепловые потери и предотвращает предварительный износ цилиндров. Режим используется при работе мотора на малых оборотах.
  • Впрыск на такте впуска (гомогенное смесеобразование). Состав топлива в этом режиме близок к стехиометрическому. Подача воздуха и бензина в цилиндр происходит одновременно. Факел смеси при таком впрыске имеет коническую форму. Применяется при мощных нагрузках (скоростной езде).
  • Двухстадийный впрыск на такте сжатия и впуска. Применяется при резком ускорении машины, движущейся на малой скорости. Двойной впрыск в цилиндр позволяет снизить вероятность детонации, которая может возникнуть в моторе при резкой подаче обогащенной смеси. Вначале (на такте впуска воздуха) подается небольшое количество бензина, что приводит к образованию обедненной смеси и снижению температуры в камере сгорания цилиндра. На такте максимального сжатия подается оставшаяся часть топлива, что делает смесь богатой.

Особенности эксплуатации системы

Главным требованием для корректной работы двигателя с прямым впрыском топлива является использование качественного бензина. Оптимальная марка топлива, как правило, указывается в инструкции к автомобилю.

Обычно рекомендуется заливать бензин с октановым числом не менее 95. Однако важно учитывать, что этот уровень не должен быть обеспечен за счет различных присадок. Исключение составляют присадки, рекомендованные производителем двигателя и автомобиля.

Низкое качество топлива, особенно при высоком проценте содержания серы, бензола и углеводородов в отечественном бензине способствует преждевременному износу форсунок, что может вывести двигатель GDI из строя.

Не менее требователен бензиновый мотор с непосредственным впрыском к тому, какое масло применяется в системе. Здесь лучше всего следовать инструкциям производителя.

Плюсы и минусы использования

Главной особенностью двигателя gdi является подача топлива напрямую в цилиндр, что сокращает время цикла и существенно повышает мощность автомобиля (до 15%). Помимо этого уменьшается расход топлива (до 25%) и повышается экологичность выхлопа. Это обеспечивает более эффективную эксплуатацию автомобиля в городских условиях.

Для автомобилей, на которых установлен GDI двигатель, проблемы эксплуатации связаны прежде всего со следующим перечнем недостатков:

  • Необходимость нейтрализации отработавших газов при работе мотора на малых оборотах. При образовании обедненной топливно-воздушной смеси в выхлопных газах образуется много вредных компонентов, для устранения которых требуется установка системы рециркуляции отработавших газов.
  • Повышенные требования к топливу и маслу. Наилучшим бензином для GDI считается топливо с октановым числом 101, который практически недоступен на отечественном рынке.
  • Высокая стоимость производства двигателей и ремонта. Весомую долю проблем доставляют форсунки, подающие бензин в цилиндры. Они должны выдерживать высокое давление. Если они забиваются по причине некачественного топлива, их невозможно разобрать и почистить – форсунки подлежат только замене. Их стоимость в несколько раз выше, чем у обычных.
  • Повышенное внимание к системе фильтрации. Чистка и замена воздушного фильтра в такой системе должна производиться чаще, поскольку качество поступающего воздуха напрямую связано с состоянием форсунок.

Отечественные автомобилисты весьма скептически относятся к системе непосредственного впрыска, что обусловлено высокой стоимостью обслуживания автомобиля. С другой стороны, такие двигатели считаются передовой технологией, которая развивается и активно внедряется в автомобилестроение по всему миру.

Система непосредственного впрыска

Система непосредственного впрыска топлива является самой современной системой впрыска топлива бензиновых двигателей. Работа системы основана на впрыске топлива непосредственно в камеру сгорания двигателя.

Впервые система непосредственного впрыска была применена на двигателе GDI (Gasoline Direct Injection – непосредственный впрыск бензина), устанавливаемом на автомобили компании Mitsubishi. В настоящее время система непосредственного впрыска используется в двигателях многих автопроизводителей. Передовики Audi (двигатели TFSI) и Volkswagen (двигатели FSI, TSI), которые практически полностью перешли на бензиновые двигатели с непосредственным впрыском.

Двигатели с непосредственным впрыском имеют в своем активе BMW (двигатели N54, N63), Infiniti (двигатели M56), Ford (двигатели EcoBoost), General Motors (двигатели Ecotec), Hyundai (двигатели Theta), Mazda (двигатели Skyactiv), Mercedes-Benz (двигатели CGI).

Применение системы непосредственного впрыска позволяет достичь до 15% экономии топлива, а также сокращения выброса вредных веществ с отработавшими газами.

Устройство системы непосредственного впрыска топлива

Конструкция системы непосредственного впрыска топлива рассмотрена на примере системы, устанавливаемой на двигатели FSI (Fuel Stratified Injection – послойный впрыск топлива). Система непосредственного впрыска составляет контур высокого давления топливной системы двигателя и включает топливный насос высокого давления, регулятор давления топлива, топливную рампу, предохранительный клапан, датчик высокого давления и форсунки впрыска.

Топливный насос высокого давления служит для подачи топлива к топливной рампе и далее к форсункам впрыска под высоким давлениям (3-11 МПА) в соответствии с потребностями двигателя. Основу конструкции насоса составляет один или несколько плунжеров. Насос приводится в действие от распределительного вала впускных клапанов.

Читайте также  Надо ли прогревать дизельный двигатель?

Регулятор давления топлива обеспечивает дозированную подачу топлива насосом в соответствии с впрыском форсунки. Регулятор расположен в топливном насосе высокого давления. Топливная рампа служит для распределения топлива по форсункам впрыска и предотвращения пульсации топлива в контуре. Предохранительный клапан защищает элементы системы впрыска от предельных давлений, возникающих при температурном расширении топлива. Клапан устанавливается на топливной рампе.

Датчик высокого давления предназначен для измерения давления в топливной рампе. В соответствии с сигналами датчика блок управления двигателем может изменять давление в топливной рампе. Форсунка впрыска обеспечивает распыление топлива в камере сгорания для образования топливно-воздушной смеси.

Согласованную работу системы обеспечивает электронная система управления двигателем, которая является дальнейшим развитием объединенной системы впрыска и зажигания. Традиционно система управления двигателем объединяет входные датчики, блок управления и исполнительные механизмы.

Помимо датчика высокого давления топлива в интересах системы непосредственного впрыска работают датчик частоты вращения коленчатого вала, датчик положения распределительного вала, датчик положения педали акселератора, расходомер воздуха, датчик температуры охлаждающей жидкости, датчик температуры воздуха на впуске.

В совокупности датчики обеспечивают необходимой информацией блок управления двигателем, на основании которой блок воздействует на исполнительные механизмы — электромагнитные клапаны форсунок, предохранительный и перепускной клапаны.

Принцип действия системы непосредственного впрыска

Система непосредственного впрыска в результате работы обеспечивает несколько видов смесеобразования:

  • послойное ;
  • стехиометрическое гомогенное ;
  • гомогенное.

Многообразие в смесеобразовании определяет высокую эффективность использования топлива (экономия, качество образования смеси, ее полное сгорание, увеличение мощности, уменьшение вредных выбросов) на всех режимах работы двигателя.

Послойное смесеобразование используется при работе двигателя на малых и средних оборотах и нагрузках. Стехиометрическое (другое наименование – легковоспламеняемое) гомогенное (другое наименование – однородное) смесеобразование применяется при высоких оборотах двигателя и больших нагрузках. На бедной гомогенной смеси двигатель работает в промежуточных режимах.

При послойном смесеобразовании дроссельная заслонка почти полностью открыта, впускные заслонки закрыты. Воздух поступает в камеры сгорания с большой скоростью, с образованием воздушного вихря. Впрыск топлива производится в зону свечи зажигания в конце такта сжатия. За непродолжительное время до воспламенения в районе свечи зажигания образуется топливно-воздушная смесь с коэффициентом избытка воздуха от 1,5 до 3. При воспламенении смеси вокруг нее остается достаточно много чистого воздуха, выступающего в роли теплоизолятора.

Гомогенное стехиометрическое смесеобразование происходит при открытых впускных заслонках, дроссельная заслонка при этом открывается в соответствии с положением педали газа. Впрыск топлива производится на такте впуска, что способствует образованию однородной смеси. Коэффициент избытка воздуха составляет 1. Смесь воспламеняется и эффективно сгорает во всем объеме камеры сгорания.

Бедная гомогенная смесь образуется при максимально открытой дроссельной заслонке и закрытыми впускными заслонками. При этом создается интенсивное движение воздуха в цилиндрах. Впрыск топлива производится на такте впуска. Коэффициент избытка воздуха поддерживается системой управления двигателем на уровне 1,5. При необходимости в состав смеси добавляются отработавшие газы из выпускной системы, содержание которых может доходить до 25%.

Впрыск топлива: прямой vs распределенный.

На самом деле, при помощи газовой педали осуществляется управление воздухоподачей внутрь цилиндров. А в зависимости от температуры мотора и его реальной производительности, будет подано и необходимое количество топлива для приготовления оптимального состава горючей смеси.

Например, у давно устаревших двигателей с карбюратором дозировка бензина осуществлялась по принципу разрежения воздуха, находящегося за заслонкой дросселя, управление которой осуществлялось педалью «газ». Сразу стоит сказать, что дозировка бензина в таком типе силового агрегата не отличалась точностью, вследствие чего карбюраторный мотор нельзя было назвать экономичным и экологически безопасным. В итоге это и послужило толчком к полному списанию карбюраторных моторов с производства.

Карбюраторные системы впрыска топлива с успехом заменили системы форсунок, подача и впрыск топливной смеси в которых осуществляется под давлением, его обеспечивает бензонасос.

Выделяют три основных типа систем впрыска:

  1. центральная;
  2. распределительная;
  3. прямая.

Однако сегодня на автомобилях применяются только последние две. Если говорить о центральной системе распределения впрыска (моновпрыске), то ее работа оказалась неэффективной, поскольку топливная смесь неравномерно распределялась по цилиндрам, а на впуске возникало значительное сопротивление, в результате чего не удалось достичь требуемого уровня экономичности. По этой причине и в связи с ужесточением норм экологической безопасности, моноврпрыск, как и карбюратор, также канул в Лету.

Относительно распределительной (многоточечной) системы впрыска MPI -Multi Point Injection можно сказать, что в ее работе также далеко не все в порядке. Однако, ее «конкуренту» – системе прямой подачи топлива, которую с конца ХХ века стал использовать на всем своем модельном ряде концерн Mitsubishi, более чем за 15 лет так и не получилось отправить MPI в отставку. Теме не менее, по прогнозам специалистов, это когда-нибудь да случится, и систему распределительного впрыска, как карбюратор и центральный впрыск отправят на «свалку автомобильной истории».

Действительно ли использование системы прямой топливоподачи настолько эффективно и оправдано, что скорое вытеснение с рынка MPI неизбежно? Дабы правильно ответить на этот вопрос, стоит провести сравнение этих систем топливоподачи.

В отличие от центрального типа топливовпрыска в этих обеих системах бензин впрыскивается через форсунку в цилиндр силового агрегата, но в распределенной системе предусмотрен впускной коллектор, через который вначале проходит топливо.

Во время прямой подачи топлива его впрыск осуществляется непосредственно в цилиндр, а точнее, в его камеру сгорания. Пожалуй, это и является главным отличием двигателей, которые у разных производителей имеют свои буквенные обозначения: CGI (Mercedes), FSI (Volkswagen), GDI (Mitsubishi), HPi (Peugeot) от модельного ряда моторов MPI.

Интересно, а чем же так хорош прямой впрыск топлива в цилиндр? Реально – ничем, если учитывать конструкционные особенности моторов. А все потому что в этом случае на создание горючей смеси и испарение паров бензина выделено слишком мало времени, чем при его прохождении через впускной коллектор, когда на выходе в цилиндр поступает уже полностью готовая смесь.

Рассмотрим и другие отличия агрегатов HPi, GDI, CGI и FSI от модельного ряда MPI-моторов:

  1. В системе прямого впрыска, давление проходящего через форсунку топлива, в несколько десятков раз выше, нежели в системе распределенного впрыска. Это достигается благодаря применению ТНВД в конструкции силовых агрегатов с прямым топливовпрыском.
  2. Специальная конструкция форсунок системы прямой топливоподачи позволяет раскручивать капельки бензина на выходе, благодаря чему быстрее осуществляется их испарение. В то время как вся функция форсунки распределительной системы состоит из средств формирования топливного факела.

Как видно, система топливоподачи MPI гораздо проще во всех отношениях. Но, это далеко не все. В двигателях с прямой подачей топлива на их производительность влияет распределение воздуха внутри них и количество впрыснутого топлива в цилиндры. По этой причине поршневая часть в агрегатах с системой прямого впрыска имеет сложную профилированную конструкцию.

Подобную функцию выполняют и клапаны впуска в конструкции коллектора системы прямой подачи топлива. В конструкции HPi, GDI, CGI и FSI агрегатов предусмотрено послойное образование горючей смеси. Это говорит о том, что полностью сгорает лишь небольшое количество топлива, находящееся вблизи свечи зажигания либо происходит процесс разрушения этого облака из горючего для того, чтобы сделать всю рабочую смесь более обогащенной. В силовых бензиновых агрегатах конструкции MPI каналы для впуска топлива необходимы исключительно для впрыска смеси бензина с воздухом в цилиндры, поэтому они не имеют заслонок и винтовой формы, как моторы с прямой топливоподачей.

Такими «наворотами» перечисление отличий системы прямой подачи топлива от распределенной не заканчивается. Однако, большинство заметных моментов уже описаны выше. Если копнуть поглубже, то стоит отметить, что топливный насос высокого давления, наличие специального впускного коллектора, поршневой части особой конструкции и сложной системы форсунок отчасти можно отнести к недостаткам, наличие которых вовсе не говорит, что лишенным этого двигателям MPI придется сойти с дистанции. Во всяком случае, в ближайшее время.

Но, рано или поздно, это все же произойдет. И опять-таки по той же причине, которая относительно недавно сделала карбюратор и систему центральной подачи топлива достоянием политехнических музеев – отсутствие у системы распределенной подачи бензина высоких показателей экономии топлива без потери мощности силового агрегата, и большое количество вредных соединений в выхлопных газах автомобиля. Проведенные тестирования систем топливоподачи выявили, что силовые агрегаты с системой прямого впрыска топлива в отличие от других моторов, имеющих одинаковый объем, позволяют экономить порядка 20-25% топлива, при этом их мощность возрастает на 10%. Естественно, что ни один из существующих автопроизводителей не станет пренебрегать заявленными удовольствиями!

Но, наличие большого количества преимуществ вовсе не говорит об отсутствии недостатков. У системы прямой подачи топлива есть свой «скелет в шкафу». Если рассматривать экологическую составляющую использования прямого впрыска, то она практически идеальна, за исключением одного «но» – повышенного содержания сажи в выхлопных газах. Это и делает систему прямой топливоподачи единственным конкурентом дизельным силовым агрегатам. А это уже реальная возможность FSI поладить с MPI. Это было бы классно, но, во всяком случае, этим системам придется ладить друг с другом в одном двигателе.

Читайте также  Как глушить турбированный бензиновый двигатель?

Именно эту идею и воплотили в жизнь конструкторы компании Volkswagen, объединив в одном моторе обе системы MPI и FSI. Двигатели 1,8 и 2,0 TFSI относятся к третьему поколению агрегатов EA888.

Прямой впрыск топлива

Еще на заре двигателестроения, сто лет назад, пути бензиновых и дизельных моторов разошлись. И тому были весомые причины в виде различия теории двух типов, а также совершенно разной организации горения смесей в цилиндре. Точнее, способа поджигания того, что должно было сгореть и выдать тепло для работы. Пройдя долгие пути совершенствования, моторы с зажиганием от свечи и двигатели, в которых смесь вспыхивает от сжатия, перепробовали в качестве топлив буквально все, что только может гореть, от керосина и тяжелых фракций нефти до природного газа, спирта и растительного масла. Системы питания этих моторов тоже были весьма разнообразны – от распылителей наподобие садовой лейки до впрыскивания топлива и в коллектор, и прямо в камеру сгорания. В итоге последние и победили всех остальных.

СЖЕЧЬ БЕЗ ОСТАТКА
Но просто доставить заряд топлива в цилиндр оказалось недостаточно. Для того чтобы сделать моторы более экономичными и снизить выбросы вредных веществ в выхлопных газах, инженерам пришлось научиться управлять еще и скоростью горения смеси, а также точно позиционировать зону начала горения, направление продвижения пламени при рабочем ходе и его температуру. Помимо оптимизации формы самой камеры сгорания, единственным способом столь точной «стрельбы» топливом по рабочему объему стало повышение давления впрыска, вследствие чего появились системы типа сommon rail. Это название мы привыкли употреблять для дизельных систем. Бензиновые аналоги именуются «прямой впрыск», и у каждого производителя называются по-своему (GD-I – у Mitsubishi, FSI – у группы Volkswagen-Audi и т. д.).

ОБЩАЯ РАМПА
Отличие аппаратуры common rail от обычных систем впрыска прежде всего в очень большом (от 200 до 2000 бар) рабочем давлении. Топливо под большим давлением аккумулируется в довольно толстой общей емкости вблизи форсунок – топливной рампе. Потому такой впрыск еще называют аккумуляторным. Большой объем рампы снижает пульсацию давления от работы форсунок, что особенно актуально для дизелей. Форсунки открываются электроимпульсом и могут быть как обычными электромагнитными, так и пьезоэлектрическими. Высокое давление нагнетает механический топливный насос.

Для чего оно нужно? Исключительно для того, чтобы за очень короткий промежуток (миллисекунды) можно было впрыснуть заряд смеси, а за весь рабочий ход одного цилиндра успеть сделать несколько таких «инъекций».

В дизельных моторах подобный цикл работы, помимо более полного сгорания, позволяет избавиться от характерного «металлического» стука. Именно поэтому современные директ-дизели так тихи и почти не дают вибраций. Кроме того, точное позиционирование огненного факела позволяет даже устроить вспышку в центре камеры, оставив воздушную прослойку у стенок. Это снижает теплонагруженность дизеля и повышает его КПД (больше тепла используется на работу, меньше без дела отдается в атмосферу). И, наконец, управляемое сгорание смеси снижает вредные выбросы.

В бензиновых моторах прямой впрыск тоже позволяет точно регулировать процессы работы и, кроме того, дает возможность получить послойное горение (именно так переводится «фольксвагеновское» Fuel Stratified Injection). Зачем это нужно? Для той же экономии топлива. Дело в том, что, как известно, для бензинового двигателя есть оптимальное соотношение бензина к воздуху, называемое стехиометрическим (примерно 1:17). Но на некоторых режимах мотор может отлично работать и при соотношении 1:40. Только такую бедную смесь уже не поджечь свечой. Послойный впрыск позволяет получить в камере сгорания слои смеси с разным соотношением в разных местах – богатым в небольшом объеме возле свечи и сверхбедным во всем остальном объеме. За счет этого помимо экономии топлива и выдающейся экологичности наблюдается снижение шумности и тепловых потерь.


КОШМАРЫ ПРЯМОГО ВПРЫСКА

Как ни странно, компоненты common rail оказались даже дешевле, чем аналогичная дизельная аппаратура. Ничего удивительного в этом нет – вместо громоздкого и технически крайне сложного ТНВД обычного дизеля здесь лишь один насос. А все функции управления мотором, ранее возложенные на ТНВД, теперь отданы электронике, которая заведомо дешевеет с каждой минутой. К тому же, перепрограммировав, эти системы гораздо легче приспособить к изменению характеристик,. Бензиновые аналоги тоже не далеко ушли по хлопотности изготовления от обычного впрыска, хотя и имеют более точные детали.

Но нам с вами, разумеется, всегда хочется узнать и об обратной стороне любого новаторства. Неужели все так безоблачно у систем аккумуляторного впрыска? Чем common rail и его бензиновые аналоги могут расстроить владельца?

Если мы будем говорить о дизельных моторах, то одно обстоятельство, безусловно, есть. И связано оно напрямую с организацией процесса горения, вернее, со снижением теплопотерь. Помните про более высокий КПД? Та энергия, что раньше шла на разогрев мотора (и через систему охлаждения-отопления к нам с вами), теперь совершает полезную работу. В северных странах этот факт означает, что водителю и пассажирам достанется меньше тепла, особенно на холостых, когда любой дизель и так почти не «греет». Правда, тут хороший рецепт – автономный подогреватель, коими и оснащают многие автомобили с common rail прямо на заводе. Для дизелей с большим объемом и автомобилей класса выше среднего этот «довесок» почти незаметен ни в цене, ни по расходу топлива. Обладателям же авто поменьше здесь придется смириться с тем, что технологичность их двигателя явно превышает таковую у остальных систем автомобиля.

Для бензиновых моторов подобной проблемы нет, и все остальные тревоги владельцев прямого впрыска нужно рассматривать через призму аккуратного отношения к таким моментам, как качественное топливо, регулярное ТО и разумная эксплуатация.

В НОГУ СО ВРЕМЕНЕМ
Да, бензин плохого качества современные системы высокого давления переваривают с трудом. Правда, скорее всего больше пострадают не они сами, а топливные фильтры и катализаторы. Хватанув один раз паленого топлива на плохой заправке и увидев желтую лампочку «Джеки Чан», просто игнорируйте эту колонку в дальнейшем и при случае нанесите визит сервисменам. Фатальный исход при таком одноразовом событии очень маловероятен.

Хуже обстоит дело с директ-дизелями, чья топливная аппаратура совершенно не переваривает ни серу в дизтопливе, ни парафины в холодное время. Но от этого же топливного «мусора» аналогично страдают и обычные дизели, вернее, их чувствительные ТНВД. Да и топлива некачественного с каждым днем у нас все меньше. Во всяком случае, на шоссе, по которому передвигаются фуры, риск заправиться плохим дизтопливом минимален. Ведь на большинстве современных тягачей тоже дизели с common rail. Речь скорее о том, на какой из сетей солярка чуть чище и где зимой сильнее разбавляют зимний дизель летним.

Да, гонять современный мотор «в хвост и в гриву», кормя его чем попало, увы, не получится. И это мне представляется вполне адекватной платой за его показатели и за хотя бы умозрительную заботу о чистоте окружающего воздуха.

Из моего почти десятилетнего опыта дальних путешествий на различных автомобилях, большая часть которых была оборудована системами впрыска высокого давления, ни разу не возникло фатальных проблем с мотором из-за топлива. Да, Check Engine вспыхивал пару-тройку раз. Однажды даже дизельный BMW 530 дал черного «медведя» после заправки под Смоленском, но не более того. Особо беспокоящимся дизелистам просто посоветую приобрести антигелевые и цетаноповышающие присадки и не пользоваться подозрительными бензоколонками, которые объезжают стороной дальнобойщики.

ТАМОЖНЯ ДАЕТ ДОБРО

Иностранные производители, хотя и отчаянно сопротивлялись первое время поставкам в Россию машин с прямым впрыском и сommon rail, тем не менее мало-помалу дали зеленый свет самым современным моторам. Как же иначе, если других двигателей с каждым днем все меньше?

Моторы с прямым впрыском высокого давления сегодня уже не редкость. Для инженеров-мотористов это даже не сегодняшний, а почти вчерашний этап двигателестроения. И хотим мы этого или нет, директ-моторы постепенно вытеснят все остальные типы. Примерно так, как когда-то на смену керосиновым, паровым, газогенераторным автомобилям и конным повозкам пришел бензиново-дизельный транспорт. Но и эти продвинутые моторы не панацея. На смену им уже спешат еще более требовательные к вниманию гибриды, электромобили, даже водородные машины дня завтрашнего. Но это уже тема другой статьи.